Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 82-86    https://doi.org/10.11896/j.issn.1005-023X.2017.02.018
  材料研究 |
高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*
张硕1, 徐梓真1, 张冰1, 宋国林1, 韩彬2, 唐国翌1
1 清华大学深圳研究生院新材料研究所, 深圳 518055;
2 黑龙江北方工具有限公司, 牡丹江 157013;
Surface Properties of Quenched GCr15 Steel Enhanced by Electropulsing Ultrasonic Surface Rolling Process
ZHANG Shuo1, XU Zizhen1, ZHANG Bing1, SONG Guolin1, HAN Bin2, TANG Guoyi1
1 Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055;
2 Heilongjiang North Tools Co.,Ltd., Mudanjiang 157013;
下载:  全 文 ( PDF ) ( 2136KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用高能电脉冲辅助超声滚压技术对高频淬火态GCr15轴承钢进行了表面强化处理,并对表层硬度梯度、表面粗糙度以及摩擦磨损性能进行了表征。与普通超声滚压技术相比,声电耦合处理后样品在提高表面硬度的同时强化层深度提高约100 μm,表面粗糙度Ra由1.4 μm降低至0.23 μm,并且在电脉冲作用下位错运动与越过能垒的能力都得到增强,从而促进表面微裂纹得到愈合,表面质量显著提高,摩擦磨损性能提高约50%。对高频淬火态GCr15轴承钢而言,脉冲电流的电致塑性效应能够促进位错运动,提高材料表面塑性变形能力,从而使超声滚压产生的塑性变形向次表层发展,显著提高强化效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张硕
徐梓真
张冰
宋国林
韩彬
唐国翌
关键词:  声电耦合处理  塑性变形  硬度  表面质量  摩擦磨损性能    
Abstract: The current study aimed at enhancing the surface properties of high-frequency quenched GCr15 steel by electropul-sing ultrasonic surface rolling process(EUSR). Experiments were put forward to reveal the surface microhardness, strengthen layer, surface quality, friction and wear behaviors. Compared with traditional ultrasonic surface rolling technology, EUSR technology not only enhanced the surface hardness, but also promoted the depth of surface strengthened layer by 100 μm. Axial roughness was reduced from Ra of 1.40 μm to Ra of 0.23 μm, and the electron flow force could accelerate the movement of dislocations and enhance the ability of pasting energy barrier, which promoted the healing of miro-cracks and leaded to a better surface quality. EUSR treatment could improve the friction and wear performance, and the wear resistance of EUSR sample was increased by about 50%. For high-frequency quenched GCr15 steel, the electroplasticity effect would promote the movement of dislocations and enhance the material surface plastic deformation, which was facilitated in spreading the plastic strain of ultrasonic rolling into the materials interior, therefore the surface properties had a remarkable improvement.
Key words:  electropulsing ultrasonic surface rolling process    plastic deformation    microhardness    surface qulity    friction and wear behaviors
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB31  
基金资助: *广东省省级科技计划项目(2014B090901029);深圳市基础研究项目(JCYJ20140417115840280);深圳市技术研究开发计划技术创新项目(CXZZ20140702113545562)
作者简介:  张硕:男,1990年生,硕士,主要研究方向为金属材料表面强化技术 E-mail:zhangshuonwpu@163.com 唐国翌:通讯作者,1954年生,教授,博士研究生导师,主要研究方向为金属材料表面改性 E-mail:tanggy@sz.tsinghua.edu.cn
引用本文:    
张硕, 徐梓真, 张冰, 宋国林, 韩彬, 唐国翌. 高能电脉冲-超声滚压耦合技术对淬火态GCr15钢表面强化研究*[J]. 《材料导报》期刊社, 2017, 31(2): 82-86.
ZHANG Shuo, XU Zizhen, ZHANG Bing, SONG Guolin, HAN Bin, TANG Guoyi. Surface Properties of Quenched GCr15 Steel Enhanced by Electropulsing Ultrasonic Surface Rolling Process. Materials Reports, 2017, 31(2): 82-86.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.018  或          https://www.mater-rep.com/CN/Y2017/V31/I2/82
1 Han H, Gao Y,Zhang Y,et al.Effect of magnetic field distribution of friction surface on friction and wear properties of 45 steel in DC magnetic field[J].Wear,2015,328:422.
2 Shi Zengmin,Zheng Yong,Feng Ping.Wear mechanism of cermet tools in cutting quenched medium carbon steel[J].Rare Metal Mater Eng,2007(S3):26(in Chinese).
石增敏,郑勇,丰平.金属陶瓷刀具切削淬火钢的磨损机理研究[J].稀有金属材料与工程,2007(S3):26.
3 Dai K,Shaw L. Comparison between shot peening and surface nanocrystallization and hardening processes[J]. Mater Sci Eng A,2007,463(1-2):46.
4 Aymen A A,Mansour M,Manfred W,et al. Effect of micro shot peening on the mechanical properties and corrosion behavior of two microstructure Ti-6Al-4V alloy [J].Appl Surf Sci,2016,363:50.
5 Suh C,Song G,Suh M,et al.Fatigue and mechanical characteristics of nano-structured tool steel by ultrasonic cold forging technology[J]. Mater Sci Eng A,2007,443(1-2):101.
6 Liu M,Li Y J,Ma Y,et al. Surface nanocrystallization and property of Ti6Al4V alloy induced by high pressure surface rolling [J].Surf Coat Technol,2016,289:94.
7 Remington B A,Allen P,Bringa E M,et al.Material dynamics under extreme conditions of pressure and strain rate[J].Mater Sci Tech-nol,2006,22(4):474.
8 Cao X J,Pyoun Y S,Murakami R.Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification[J].Appl Surf Sci,2010,256(21):6297.
9 Huang L,Lu J,Troyon M.Nanomechanical properties of nanostructured titanium prepared by SMAT[J]. Surf Coat Technol,2006,201(1-2):208.
10 Zhang Y S,Han Z,Wang K,et al.Friction and wear behaviors of nanocrystalline surface layer of pure copper[J].Wear,2006,260(9-10):942.
11 Abreu H F G,Tavares S S M,Carvalho S S,et al. Texture and microstructure of cold rolled and recrystallized pure niobium[J].Mater Sci Forum,2007,539-543:3436.
12 Wang Lingsheng,Ye Xiaoxin,Liu Tao.Effect of electropulsing assisted ultrasonic impact treatment on residual stress and microhardness of weld [J].Mater Rev:Res,2015,29(9):71(in Chinese).
王铃声,叶肖鑫,刘涛,等.电脉冲辅助超声冲击技术对焊缝残余应力及显微硬度的影响[J].材料导报:研究篇,2015,29(9):71.
13 Roland T,Retraint D,Lu K,et al.Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scripta Mater,2006,54(11):1949.
14 Tian J W,Villegas J C,Yuan W,et al.A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 supe-ralloy[J]. Mater Sci Eng A,2007,468-470:164.
15 Liu Wencai,Dong Jie,Zhang Ping,et al.Research status of fatigue properies of surface treated magnesium alloys[J]. Mater Rev:Res,2008,22(7):91(in Chinese).
刘文才,董杰,张平,等.表面处理镁合金疲劳性能的研究现状[J].材料导报:研究篇,2008,22(7):91.
16 Lee W B,Cho K T,Kim K H,et al.The effect of the cementite phase on the surface hardening of carbon steels by shot peening[J]. Mater Sci Eng A,2010,527(21-22):5852.
17 Troitskii O A,Likhtman V I.Anisotropy of the effect of electron-beam and irradiation on the deformation process of zinc single crystals in the brittle state[J]. Dokl. Akad. Nauk SSSR,1963,148:332.
18 Xu Z, Tang G, et al.Research of electroplastic rolling of AZ31 Mg alloy strip[J].J Mater Process Technol,2007,182(1-3):128.
19 Wang H,Song G,Tang G,et al. Evolution of surface mechanical properties and microstructure of Ti6Al4V alloy induced by electropulsing-assisted ultrasonic surface rolling process [J]. J Alloys Compd,2016,681:146.
20 Samuel E I,Bhowmik A,Qin R.Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel[J].J Mater Res,2010,25(6):1020.
21 Qin R S,Samuel E I,Bhowmik A.Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels[J].J Mater Sci,2011,46(9):2838.
22 Qin R S,Rahnama A,Lu W J,et al.Electropulsed steels[J].Mater Sci Technol,2014,30(9):1040.
23 Jiang Y,Tang G,Shek C,et al.On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg-9Al-1Zn alloy[J].Acta Mater,2009,57(16):4797.
24 Zhu R F,Tang G Y,Shi S Q,et al.Effect of electroplastic rolling on the ductility and superelasticity of TiNi shape memory alloy[J].Mater Des,2013,44:606.
25 Wang H,Song G,Tang G.Enhanced surface properties of austenitic stainless steel by electropulsing-assisted ultrasonic surface rolling process[J].Surf Coat Technol,2015,282:149.
26 Ye X,Yang Y,Tang G. Microhardness and corrosion behavior of surface gradient oxide coating on the titanium alloy strips under high energy electro-pulsing treatment[J].Surf Coat Technol,2014,258:467.
27 Pagnoux G,Fouvry S,Peigney M,et al.Influence of scratches on the wear behavior of DLC coatings[J].Wear,2015,330-331:380.
28 Nie X Y,Zhang P,Weiner A M,et al.Nanoscale wear and machining behavior of nanolayer interfaces[J].Nano Lett,2005,5(10):1992.
29 Huang J,Lee J,Li C.Nano-scratching and nano-machining in diffe-rent environments on Cr2N/Cu multilayer thin films[J].Thin Solid Films,2011,519(15):4992.
30 Fu W,Chen C A,Huang K,et al.Nano-scratch evaluations of copper chemical mechanical polishing[J].Thin Solid Films,2013,529:306.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[4] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[5] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[6] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[7] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[8] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[9] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[10] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[11] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[12] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[13] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[14] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[15] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed