Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 8-12    https://doi.org/10.11896/j.issn.1005-023X.2017.02.002
  材料研究 |
多孔胶原-β-磷酸三钙-硫酸软骨素复合膜的制备与表征*
薛媛1,2, 但年华1,2, 但卫华1,2
1 四川大学皮革化学与工程教育部实验室, 成都 610065;
2 四川大学生物医学工程技术研究中心, 成都 610065;
Preparation and Characterization of Porous Collagen-β-tricalcium Phosphate-chondroitin Sulfate Composite Membrane
XUE Yuan1,2, DAN Nianhua1,2, DAN Weihua1,2
1 National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065;
2 Biomedical Engineering Technology Research Center, Sichuan University, Chengdu 610065;
下载:  全 文 ( PDF ) ( 2114KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过碳化二亚胺(EDC)改性、二次冻干制备多孔胶原-β-磷酸三钙-硫酸软骨素复合膜材料。通过扫描电镜(SEM)、X射线衍射分析仪(XRD)与原子力显微镜(AFM)考察了组分变化与制备过程中复合材料的微观形貌变化,并进一步利用红外、孔隙率、MTT细胞毒性实验等分析手段对复合材料的结构与性能进行了表征。实验结果表明,当胶原盐酸溶解液pH=2,胶原与β-磷酸三钙质量比为1∶2(m(Col)∶m(β-TCP)=1∶2)时,复合材料中β-TCP晶相保持较好,其与胶原之间的排列结合最为均匀紧密。经EDC改性后,SEM与AFM实验均显示了交联后的胶原束明显变大变粗,以一定的方向紧密地排列在一起。XRD图谱显示复合材料中β-TCP特征衍射峰明显。复合材料的孔径为80~90 μm,三元膜孔隙率为(90.76±1.28)%,大于纯胶原冻干膜(85.88±0.92)%;红外光谱证实β-TCP中的钙离子与Col上的羧基发生了化学键合,AFM显示β-TCP颗粒能与胶原发生直接联结。复合材料的MTT实验结果为1级,是一种潜在的口腔修复膜材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛媛
但年华
但卫华
关键词:  胶原  β-磷酸三钙  硫酸软骨素  多孔复合膜  微观形貌    
Abstract: The porous collagen-β-tricalcium phosphate-chondroitin sulfate composite membrane was prepared by EDC modification and twice freeze-dried method. The effect of variation of material proportion, pH value and method in materials preparation process on the structure and properties of composite materials were investigated by scanning electron microscope (SEM), X-ray diffraction analyzer (XRD) and atomic force microscope (AFM), FT-IR, porosity measurer, MTT cytotoxicity tester. The results indicated that when the pH value of collagen/HCl solution was 2, the mass ratio of collagen and β-tricalcium phosphate was 1∶2 (m(Col)∶m(β-TCP)=1∶2), the β-TCP′s crystalline phase maintained, the composition was uniform and compact. After EDC modification, the SEM and AFM results showed that the collagen bundles after crosslinking got bigger and thicker obviously, arranged closely in a certain direction. XRD spectrum showed that the characteristic diffraction peaks of β-TCP in composite materials were obvious. The pore size of composite material was about 80-90 μm, the porosity of ternary membrane was (90.76±1.28)%, larger than that of collagen membrane (85.88±0.91)%. Infrared spectra confirmed that Ca2+ of β-TCP and carboxyl of Col were chemically bonded. AFM showed that β-TCP particles had a direct connection with collagen. The MTT cytotoxicity levels of compo-site materials were 1, which was a kind of potential dental restorative material.
Key words:  collagen    β-tricalcium phosphate    chondroitin sulfate    porous composite membrane    microstructure
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  O636  
基金资助: *国家自然科学基金(51473001)
作者简介:  薛媛:女,1992年生,硕士研究生,研究方向为胶原基生物医用材料 E-mail:xy1992628@126.com 但卫华:通讯作者,男,1956年生,博士,教授,博士研究生导师,研究方向为生物质医用材料及功能皮革 E-mail:dwh5607@263.net
引用本文:    
薛媛, 但年华, 但卫华. 多孔胶原-β-磷酸三钙-硫酸软骨素复合膜的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(2): 8-12.
XUE Yuan, DAN Nianhua, DAN Weihua. Preparation and Characterization of Porous Collagen-β-tricalcium Phosphate-chondroitin Sulfate Composite Membrane. Materials Reports, 2017, 31(2): 8-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.002  或          https://www.mater-rep.com/CN/Y2017/V31/I2/8
1 Carbonell J M, et al. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: A literature review [J]. Ont J Oral Maxillofacial Surg,2014,43(1):75.
2 OH T J, Meraw S J, Lee E J, et al. Comparative analysis of collagen membranes for the treatment of implant dehiscence defects [J]. Clin Oral Implants Res,2003,14(1):80.
3 Yu Y, Deng F. The application and progress of barrier membrane in guided bone regeneration [J]. Chin J Oral Implantology,2006,11(3):137(in Chinese).
余粤海,邓飞龙.GBR技术中屏障膜的应用和研究进展[J]. 中国口腔种植学杂志,2006,11(3):137.
4 Jovanovic S A, Hunt D R, Bernard G W, et al. Bone reconstruction following implantation of rhBMP-2 and guided bone regeneration in canine alveolar ridge defects [J]. Clinic Oral Implants Res,2007,18(2):224.
5 Veríssimo D M, Leitao R F, Ribeiro R A, et al. Polyanionic collagen membranes for guided tissue regeneration: Effect of progressive glutaraldehyde cross-linking on biocompatibility and degradation[J]. Acta Biomater,2010,6(10):4011.
6 Tal H, Kozlovsky A, Artzi Z, et al. Long-term bio-degradation of cross-linked and non-cross-linked collagen barriers in human guided bone regeneration[J]. Clin Oral Implants Res,2008,19(3):295.
7 Han X, Fu Y, Zhang F. Advances in research and application of β-tricalcium phosphate/collagen composite in bone tissue engineering [J]. Shanghai J Stomatology,2007,16(1):93(in Chinese).
韩祥永,傅远飞,张富强.β-磷酸三钙、胶原及其复合物在骨组织工程中的应用研究进展[J]. 上海口腔医学,2007,16(1):93.
8 Wang K, Zeng R, Ye Y, et al. Preparation of collagen-chitosan-chondroitin sulfate composite membranes and its characterization [J]. China Leather,2009,38(1):22 (in Chinese).
王康健,曾睿,叶易春,等.胶原-壳聚糖-硫酸软骨素三元膜材料的制备与结构表征[J].中国皮革,2009,38(1):22.
9 Guan B. Preparation and biological evaluation of bone-like collagen fibril based porous tricalcium phosphate/collagen composites [D]. Hangzhou:Zhejiang University,2008(in Chinese).
官丙刚.类骨结构胶原纤维基多孔磷酸三钙/胶原复合材料的制备及其生物学评价[D]. 杭州:浙江大学,2008.
10 Zou C, Weng W, Deng X, et al. Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integra-ted structure [J]. Biomaterials,2005,26(26):5276.
11 Plepis A, Goissis G, Das-Gupta D K. Dielectric and pyroelectric characterization of anionic and native collagen [J]. Polym Eng Sci,1996,36:2932.
12 Ge J, Wang Y, Zheng Y. Degradable performance and bio-mineralization function of β-tricalcium phosphate/poly (lactic acid) tissue engineering scaffold in SBF [J]. Polym Mater Sci Eng,2011,27(9):119(in Chinese).
葛建华,王迎军,郑裕东.β-磷酸三钙/聚乳酸组织工程支架在模拟体液中的降解和矿化性能[J]. 高分子材料科学与工程,2011,27(9):119.
13 Li G, Zhang Z, Fu Q, et al. Classes of the forms of collagens and their physiological functions [J]. J Shanxi University of Science Technology, 2004,22(3):80(in Chinese).
李国英,张忠楷,付强,等.胶原的形态分类及其生理机能[J].陕西科技大学学报,2004,22(3):80.
14 詹怀宇,李自强,蔡再生.纤维化学与物理[M].北京:化学出版社,2005.
15 Zhong J, Ouyang X, Mei F, et al. Construction of 3D complex of porous β-tricalcium phosphate/collagen scaffold dog periodontal ligament cells [J]. J Peking University:Health Sciences,2007,39(5):507(in Chinese).
钟金晟,欧阳翔英,梅芳,等.多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报:医学版,2007,39(5):507.
[1] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[2] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[3] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[4] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[5] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[6] 韩庆秋, 寇慧芝, 未本美, 许承志, 侯袁静, 汪海波. 氨基酸组成及分子表面属性对胶原与盘状结构域受体DDR2结合能力的影响[J]. 材料导报, 2024, 38(20): 23080025-7.
[7] 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
[8] 马彭逸, 李琛, Ouaskioud Oumaima, 任丽. 胶原蛋白促进成骨细胞在磷灰石基质上增殖和分化[J]. 材料导报, 2024, 38(11): 23050130-11.
[9] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[10] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[11] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[12] 何晓棠, 但晔, 陈一宁, 王云兵, 胡晓兵, 李正军, 但卫华. 胶原基生物材料制备与应用研究进展[J]. 材料导报, 2023, 37(2): 21030226-9.
[13] 冯荣欣, 但年华, 陈一宁, 但卫华. 胶原基生物材料在医学美容领域的研究进展[J]. 材料导报, 2023, 37(14): 21110149-9.
[14] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[15] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed