Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (2): 13-19    https://doi.org/10.11896/j.issn.1005-023X.2017.02.003
  材料研究 |
微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*
惠爱平1, 马建中1, 刘俊莉2
1 陕西科技大学资源与环境学院, 西安 710021;
2 陕西科技大学材料科学与工程学院, 西安 710021;
Photocatalytic Performance and Antimicrobial Activity of Microwave-assisted Hydrothermally Synthesized, Visible-light Responsive Sm-doped ZnO Crystallites
HUI Aiping1, MA Jianzhong1, LIU Junli2
1 College of Resources and Environment, Shaanxi University of Science & Technology, Xi’an 710021;
2 College of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021;
下载:  全 文 ( PDF ) ( 1876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用六水合硝酸锌为锌源、六水合硝酸钐为掺杂剂、十二烷基硫酸钠为诱导剂、无水乙醇和水为混合溶剂,利用微波辅助水热法制备了Sm掺杂ZnO微晶。将Sm掺杂到ZnO晶体结构中,不仅改变ZnO的晶体结构,而且Sm掺杂对ZnO的形貌有明显的影响。考察不同Sm掺杂ZnO样品对罗丹明B的降解性能和对白色念珠菌和霉菌的抗菌活性,结果表明,[Sm]/[Zn]物质的量比为1%的Sm掺杂ZnO微晶表现出最好的光催化性能和抗菌活性。在模拟可见光下(500 W氙灯)照射160 min后光催化降解罗丹明B的脱色率为75.9%,TOC去除率为66.3%。由菌落计数结果可知,其对白色念珠菌和黄曲霉的抑菌率分别为81%和77%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
惠爱平
马建中
刘俊莉
关键词:  Sm掺杂  ZnO  微晶  光催化性能  抗菌活性    
Abstract: Using Zn(NO3)2·6H2O as zinc source, Sm(NO3)3·6H2O as dopant, sodium dodecyl sulfate as revulsant, absolute alcohol and water as mixed solvent, a series of samarium-doped ZnO crystallites varied in Sm content were successfully prepared by microwave-assisted hydrothermal method. Doping Sm3+ into ZnO lattice changesits crystal structure and also has an obvious effect on morphology of ZnO crystallites. The photocatalytic performances towards rhodamine B, antimicrobial activity against candida albicans and aspergillusflavus of doped ZnO crystallites were investigated in detail. The results indicated that [Sm]/[Zn]=1%crytallite has better photocatalytic performance and antimicrobial activity. Under a simulated visible light irradiation (500 W Xenon lamp), the decolorization rate of rhodamine B was 75.9% after 160 min, TOC removal rate was 66.3%. Colony count result showed that the inhibition rates of 1% samarium-doped ZnO crytallite against candida albicans and aspergillusflavus rate were 81% and 77%, respectively.
Key words:  Sm doping    ZnO    crystallite    photocatalytic performance    antimicrobial activity
出版日期:  2017-01-25      发布日期:  2018-05-02
ZTFLH:  TB34  
基金资助: *国家自然科学基金(21376145);陕西省自然科学基础研究计划项目(2014JQ6209)
作者简介:  惠爱平:男,1988年生,硕士,主要研究方向为环境光催化材料的制备 E-mail:aphui1215@163.com 马建中:通讯作者,男,1960年生,教授,主要研究方向为有机/无机纳米杂化材料的制备 E-mail: majz@sust.edu.cn 刘俊莉:通讯作者,女,1986年生,讲师,主要研究方向为纳米能源和环境材料 E-mail:liujunli042@163.com
引用本文:    
惠爱平, 马建中, 刘俊莉. 微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*[J]. 《材料导报》期刊社, 2017, 31(2): 13-19.
HUI Aiping, MA Jianzhong, LIU Junli. Photocatalytic Performance and Antimicrobial Activity of Microwave-assisted Hydrothermally Synthesized, Visible-light Responsive Sm-doped ZnO Crystallites. Materials Reports, 2017, 31(2): 13-19.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.02.003  或          https://www.mater-rep.com/CN/Y2017/V31/I2/13
1 Ma J Z, Hui A P, Liu J L. Research progress on antibacterial materials on nano-ZnO[J].J Funct Mater,2014,45(24):24001(in Chinese).
马建中,惠爱平,刘俊莉.纳米ZnO抗菌材料的研究进展 [J].功能材料,2014,45(24):24001.
2 Zhou Z W, Liu G M, Luo Y B, et al. Inorganic antibacterial mate-rials research dynamic at home and abroad[J]. Adv Mater Ind,2007(3):74(in Chinese).
周祚万,刘国梅,罗雁彬,等.国内外无机抗菌材料研究动态[J]. 新材料产业,2007(3):74.
3 Liu Y, He L, Mustapha A, et al. Antibacterial activities of zinc oxi-de nanoparticles against Escherichia coli O157:H7 [J]. J Appl Microbiol,2009,107:1193.
4 Hirota K, Sugimoto M, Kato M, et al. Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions [J]. Ceram Int,2010,36:497.
5 Liu J L, Ma J Z, Bao Y, et al. Nanoparticle morphology and film-forming behavior of polyacrylate/ZnO nanocomposite[J]. Compos Sci Technol,2014,98:64.
6 Ma J Z, Liu J L, Bao Y, et al.Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property [J]. Ceram Int,2013,39:2803.
7 Xu X L, Chen D, Yi Z G, et al.Antimicrobial mechanism based on H2O2 generation at oxygenvacancies in ZnO crystals [J]. Langmuir,2013,29:5573.
8 Xie J, Wang H, Duan M, et al. Synthesis and photocatalysis pro-perties of ZnO structures with different morphologies via hydrothermal method [J]. Appl Surf Sci,2011,257:6358.
9 He W W, Zhao H X, Jia H M. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity [J]. Mater Res Bull,2014,53:246.
10 He W W, Kim H K, Waner W G. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity [J]. J Am Chem Soc,2014,136:750.
11 Han Z Z, Liao L, Wu Y T, et al. Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures [J]. J Hazard Mater,2012,217-218:100.
12 Abdulrahman Syedahamed H H, Chandrasekaran K, Seemaisamy S, et al. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the coprecipitation method [J]. J Mater Chem B,2013,1:5956.
13 Yu C L, Yang K, Yu J M, et al. Effects of rare earth Ce doping on the structure and photocatalytic performance of ZnO[J]. Acta Phys-Chim Sin,2011,27(2):505(in Chinese).
余长林,杨凯,余济美,等. 稀土Ce掺杂对ZnO结构和光催化性能的影响[J].物理化学学报,2011,27(2):505.
14 Chen C Y, Nan H, Li K, et al. Preparation and optical property of sharp-controlled nanoZnO[J]. J Synth Cryst,2014,43(2):404(in Chinese).
陈春燕,南海,李昆,等.可控形貌纳米氧化锌的制备及光学性能研究[J]. 人工晶体学报,2014,43(2):404.
15 Ma J Z, Hui A P, Liu J L, et al. Controllable synthesis of highly efficient antimicrobial agent - Fe doped sea urchin-like ZnO nanoparticles [J]. Mater Lett,2015,158:420.
16 Li Y, Zhang W, Niu J F, et al. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles [J]. ACS Nano,2012,6(6):5164.
17 Applerot G, Lipovsky A, Dror R, et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury [J]. Adv Funct Mater,2009,19(6):842.
18 Xiao Q, Si Z C, Zhang J, et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline [J]. J Hazard Mater,2008,150:62.
19 Xiao Q, Si Z C, Yu Z M, et al. Characterization and photocatalytic activity of Sm3+-doped TiO2nanocrystalline prepared by low tempe-rature combustion method [J]. J Alloy Compd,2008,450:426.
[1] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[2] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[3] 包镇红, 罗薇, 苗立锋, 江伟辉. 晶化制度对Mg0.6Al1.2Si1.8O6透明微晶玻璃结构与性能的影响[J]. 材料导报, 2024, 38(13): 23010083-6.
[4] 李红梅, 孟建兵, 于浩洋, 董小娟, 周海安, 战胜杰, 唐友泉. ZnO纳米颗粒掺杂对镍钛合金表面微弧氧化膜层形貌及性能的影响[J]. 材料导报, 2024, 38(13): 22110123-7.
[5] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[6] 何绪林, 叶勤燕, 罗坤, 郑兴平, 冉小龙, 廖成. 高精准度检测紧固件轴向预紧力的薄膜压电传感器的研究[J]. 材料导报, 2023, 37(7): 21080201-4.
[7] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[8] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[9] 潘权子, 刘文晓, 孟则达, 罗莉, 刘守清. 压电增强二硫化钼/氧化锌近红外光催化降解氨氮[J]. 材料导报, 2023, 37(19): 22030259-7.
[10] 陈晶亮, 栾丽君, 张茹, 张研, 杨云, 刘剑, 田野, 魏星, 樊继斌, 段理. Ⅱ型C2N/ZnO异质结水分解光催化剂的第一性原理研究[J]. 材料导报, 2023, 37(11): 21110258-8.
[11] 马超, 余飞, 孙翼飞, 袁欢, 徐明. 具有高催化活性的Ag复合Sm∶ZnO纳米复合材料的制备、表征以及光催化机理研究[J]. 材料导报, 2022, 36(8): 21010244-8.
[12] 惠爱平, 马梦婷, 杨芳芳, 康玉茹, 王爱勤. 季铵化壳聚糖改性ZnO/凹凸棒石纳米复合材料及其抗菌性能[J]. 材料导报, 2022, 36(3): 21110131-7.
[13] 关玉琴, 侯清玉, 谷玉兰. 不同价态的Mn和点空位对ZnO体系光学性能的影响[J]. 材料导报, 2022, 36(2): 20110265-7.
[14] 陈鑫, 刘凌云, 陶马冠宇, 王晓光, 柳建军. 用于电机散热的定形复合相变材料研究[J]. 材料导报, 2022, 36(19): 21060037-7.
[15] 刘全, 孙红娟, 彭同江, 王璨. 烧结温度对石棉矿山废石制备微晶玻璃析晶性能的影响[J]. 材料导报, 2022, 36(15): 21040122-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed