Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25020163-10    https://doi.org/10.11896/cldb.25020163
  高分子与聚合物基复合材料 |
层合碳纤维复合材料拉胀超结构的力学行为研究
赵昌方1,2, Boris Nikitovich Fedulov2, 刘浩1,2,*
1 清华大学航天航空学院,北京 100084
2 莫斯科国立大学力学与数学系,俄罗斯 莫斯科 119991
Study on the Mechanical Behaviour of Auxetic Meta-structures Made from Laminated CFRP
ZHAO Changfang1,2, Boris Nikitovich Fedulov2, LIU Hao1,2,*
1 School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
2 Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia
下载:  全 文 ( PDF ) ( 27223KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纤维增强复合材料(CFRP)拉胀超结构凭借其轻质、高强、可设计性等优势,近年来在航空航天领域备受关注。为揭示层合CFRP拉胀超结构的基本力学行为和形成机理,基于经典层合板理论和Euler-Bernoulli梁弯曲理论,分别建立了层合板的二维各向异性本构模型和内凹六边形拉胀超结构的等效弹性力学模型,并结合经过验证的有限元方法预测了CFRP元胞的拉伸、压缩和剪切行为。结果表明,面内拉伸和压缩均呈现出线性行为,且拉压刚度相同,但强度因失效位置不同而不同。面内和面外剪切行为均具有非线性,不同方向上的刚度和强度因变形模式、材料性质和失效模式不同而具有明显差异。侧壁的微观失效形貌包括基体开裂、纤维拔出、纤维断裂等,但面外剪切工况下还会出现局部断裂诱发的分层破坏。面内拉压与面外剪切均呈现出负泊松比效应(Y方向拉压时效果更好),且泊松比理论预测结果接近于模拟结果。面外剪切失效应变约为150%,展现出优异的曲面同向性与抗剪切承载能力。这些结果可为复合材料超结构的功能应用和可控设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵昌方
Boris Nikitovich Fedulov
刘浩
关键词:  超材料  超结构  负泊松比  拉胀  复合材料  有限元分析    
Abstract: Carbon fiber reinforced plastic (CFRP) auxetic meta-structures have attracted much attention in the aerospace field in recent years due to their advantages of light weight, high strength and designability. To reveal the basic mechanical behaviour of auxetic meta-structures made from laminated CFRP and their formation mechanism, two-dimensional anisotropic constitutive models of laminates and equivalent elastic mecha-nical models of re-entrant hexagonal auxetic meta-structures have been developed based on classical laminate theory and Euler-Bernoulli beam bending theory, respectively. Combined with the validated finite element method, the tensile, compressive and shear behaviour of the CFRP meta-cell were predicted. The results show that the in-plane tensile and compressive behaviours exhibit linear characteristics and have the same stiffness, but their strengths are different due to the different failure locations. Both the in-plane and out-of-plane shear behaviours are nonlinear, and the stiffnesses and strengths in different directions are significantly different due to the different deformation modes, material properties and failure modes. Microscopic failure modes of the sidewalls include matrix cracking, fiber pull-out and fiber fracture, but delamination damage induced by local fracture also occurs under out-of-plane shear conditions. Both in-plane tensile and out-of-plane shear show a negative Poisson’s ratio effect (with the effect being better for Y-direction tension), and the predicted Poisson’s ratios are close to the simulation results. The out-of-plane shear failure strain is about 150%, showing excellent synclastic behaviour and shear bearing capacity. These results can provide a reference for the functional application and controllable design of composite meta-structures.
Key words:  metamaterial    meta-structure    negative Poisson’s ratio    auxetic    composite material    finite element analysis
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  O34  
  TB303  
  TQ327  
基金资助: 国家自然科学基金(12402458);中国博士后科学基金(2024M751640);国家资助博士后研究人员计划(GZC20231315);黑龙江省重点研发计划(2023ZX07D03)
通讯作者:  *刘浩,博士,清华大学航天航空学院航空宇航工程系助理研究员。目前主要从事复合材料结构、航空宇航技术等方面的研究。drhaoliu@tsinghua.edu.cn   
作者简介:  赵昌方,博士,清华大学航天航空学院工程力学系助理研究员。目前主要从事复合材料力学、力学超材料方面的研究。
引用本文:    
赵昌方, Boris Nikitovich Fedulov, 刘浩. 层合碳纤维复合材料拉胀超结构的力学行为研究[J]. 材料导报, 2026, 40(2): 25020163-10.
ZHAO Changfang, Boris Nikitovich Fedulov, LIU Hao. Study on the Mechanical Behaviour of Auxetic Meta-structures Made from Laminated CFRP. Materials Reports, 2026, 40(2): 25020163-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020163  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25020163
1 Walser R M. Proceedings of SPIE, 2001, 4467(1), 1.
2 Wang L, Ulliac G, Wang B, et al. Advanced Science, 2022, 9, 2204721.
3 Pendry J B, Holden A J, Stewart W J, et al. Physical Review Letters, 1996, 76, 4773.
4 Smith D R, Padilla W J, Vier D C, et al. Physical Review Letters, 2000, 84, 4184.
5 Cui T J, Liu S, Zhang L. Journal of Materials Chemistry C, 2017, 5, 3644.
6 Liu J, Teunisse M, Korovin G, et al. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, e2308414121.
7 Jiao P, Mueller J, Raney J R, et al. Nature Communications, 2023, 14, 6004.
8 Mirkhalaf M, Rafsanjani A. Matter, 2023, 6, 3719.
9 Lakes R. Advanced Materials, 1993, 5, 293.
10 Greaves G N, Greer A L, Lakes R S, et al. Nature Materials, 2011, 10, 823.
11 Yang Z W, Zhou H. Materials Reports, 2020, 34(21), 21052 (in Chinese).
杨智为, 周涵. 材料导报, 2020, 34(21), 21052.
12 Ren X, Das R, Tran P, et al. Smart Materials and Structures, 2018, 27, 023001.
13 Liu Y, Zhao C, Xu C, et al. Engineering Research Express, 2023, 5, 042003.
14 Zhao C F. Metamaterials-progress, devices and applications, Alejandro L B, ed., IntechOpen, UK, 2025, pp. 1.
15 Wei G Y. Materials Reports, 2003, 17(1), 8(in Chinese).
魏高原. 材料导报, 2003, 17(1), 8.
16 Evans K E, Alderson A. Advanced Materials, 2000, 12, 617.
17 Wang Z, Luan C, Liao G, et al. Advanced Engineering Materials, 2020, 22, 2000312.
18 Love A. A treatise on the mathematical theory of elasticity, The University Press, UK, 1944, pp. 75.
19 Lakes R. Science, 1987, 235, 1038.
20 Evans K E, Nkansah M A, Hutchinson I J, et al. Nature, 1991, 353, 124.
21 Evans K E, Alderson K L. Journal of Materials Science Letter, 1992, 11, 1721.
22 Xia J J, Li J, Zhang Y M, el al. Materials Reports, 2021, 35(11), 11197 (in Chinese).
夏进军, 李洁, 张雨萌, 等. 材料导报, 2021, 35(11), 11197.
23 Li X, Peng W, Wu W, et al. International Journal of Extreme Manufacturing, 2023, 5, 042003.
24 Balan P M, Mertens A J, Bahubalendruni M V A R. Materials Today Communications, 2023, 34, 105285.
25 Chan N, Evans K E. Journal of Cellular Plastics, 1999, 35, 130.
26 Attard D, Grima J N. Physica Status Solidi (b), 2008, 245, 2395.
27 Grima J N, Oliveri L, Attard D, et al. Advanced Engineering Materials, 2010, 12, 855.
28 Schenk M, Guest S D. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3276.
29 Wang K, Chang Y H, Chen Y, et al. Materials & Design, 2015, 67, 159.
30 Lei M, Hong W, Zhao Z, et al. ACS Applied Materials & Interfaces, 2019, 11, 22768.
31 Yeon H, Lee H, Kim Y, et al. Science Advances, 2021, 7, eabg8459.
32 McHale G, Alderson A, Armstrong S, et al. Small Structures, 2024, 5, 2300458.
33 Zhong J L, Zhao C F, Liu Y Z, et al. Fibers and Polymers, 2024, 25, 395.
34 Zhao C F, Zhou Z T, Zhu H W, et al. Materials Reports, 2021, 35(12), 12209(in Chinese).
赵昌方, 周志坛, 朱宏伟, 等. 材料导报, 2021, 35(12), 12209.
35 Zhao C F. Composite materials-science and engineering, Petrica V, ed., IntechOpen, UK, 2024, pp. 1.
36 Chirima G, Ravirala N, Rawal A, et al. Physica Status Solidi (b), 2008, 245, 2383.
37 Lim T C. Auxetic materials and structures, Lim T C, ed., Springer, Singapore, 2015, pp. 533.
38 Wang Z, Zulifqar A, Hu H. Advanced composite materials for aerospace engineering, Sohel R, Raul F, ed., Woodhead Publishing, UK, 2016, pp. 213.
39 Quan C, Han B, Hou Z, et al. Composites Part B: Engineering, 2020, 187, 107858.
40 Zhao C, Zhou Z, Zhang K, et al. Arabian Journal for Science and Engineering, 2021, 46, 2891.
41 Zhao C, Goh K L, Lee H P, et al. Composite Structures, 2023, 303, 116319.
42 Zhao C, Zhong J, Wang H, et al. Materials & Design, 2024, 246, 113295.
43 Zhong J, Zhao C, Chen C, et al. European Journal of Mechanics-A/Solids, 2025, 109, 105454.
44 Yang L, Harrysson O, West H, et al. International Journal of Solids and Structures, 2015, 69-70, 475.
45 Gibson L J, Ashby M F, Schajer G S, et al. Proceedings of the Royal Society of London A, 1982, 382, 43.
46 Zhao C, Zhong J, Wang H, et al. Polymer Composites, 2023, 45(5), 3965.
47 Zhong J, Zhao C, Ren J, et al. Applied Composite Materials, 2022, 29, 629.
48 Zhao C F, Zhu H W, Ren J, et al. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2021, 42(5), 75(in Chinese).
赵昌方, 朱宏伟, 任杰, 等. 青岛科技大学学报(自然科学版), 2021, 42(5), 75.
49 Zhao C, Zhou Z, Liu X, et al. Journal of Alloys and Compounds, 2021, 859, 157840.
50 Zhao C F, Goh K L, Le G G, et al. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2023, 44(5), 87(in Chinese).
赵昌方, Goh K L, 乐贵高, 等. 青岛科技大学学报(自然科学版), 2023, 44(5), 87.
[1] 吴睿琦, 刘成宝, 陈丰, 邱永斌, 孟宪荣, 陈志刚. ZnS-g-C3N4/C的合成及光催化降解四环素研究[J]. 材料导报, 2026, 40(2): 24100242-8.
[2] 李静, 焦之森, 张灵, 黄莹, 陈正. 超高韧性矿渣-甘蔗渣灰基地聚物复合材料的流变特性研究[J]. 材料导报, 2026, 40(2): 24080183-7.
[3] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[4] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[5] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[6] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[7] 姜劲驰, 李文晓, 方可言. 人工智能方法在RTM工艺仿真中的应用[J]. 材料导报, 2026, 40(1): 24120233-8.
[8] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[9] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[10] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[11] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[12] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[13] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[14] 陈易诚, 涂建勇, 李鑫, 范晓孟. 雷达/红外兼容隐身材料设计原理及研究进展[J]. 材料导报, 2025, 39(6): 23120256-10.
[15] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed