Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120163-7    https://doi.org/10.11896/cldb.24120163
  金属与金属基复合材料 |
TiAl合金片层组织不连续粗化转变
王柯涵1,2, 刘涵1,2, 宗骁1,2, 梁永锋3, 南海1,2, 林均品3, 丁贤飞1,2,*
1 中国航发北京航空材料研究院,北京 100095
2 北京市先进钛合金精密成型工程技术研究中心,北京 100095
3 北京科技大学新金属材料国家重点实验室,北京 100083
Review on Lamellar Structure Discontinuous Coarsening Transition in TiAl Alloy
WANG Kehan1,2, LIU Han1,2, ZONG Xiao1,2, LIANG Yongfeng3, NAN Hai1,2, LIN Junpin3, DING Xianfei1,2,*
1 AECC Beijing Institute of Aeronautical Material, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Titanium Alloy Precision Forming Technology, Beijing 100095, China
3 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 11768KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiAl合金具有优异的比强度、抗氧化、抗蠕变等特性,使其在高温结构材料领域有着广阔的应用前景。掌握其在近服役条件下的组织稳定性规律是实现其工程化应用的必然要求。片层结构是TiAl合金中最重要的微观结构形态,本文介绍了TiAl合金片层结构的连续粗化和不连续粗化类型,讨论了影响TiAl合金不连续粗化行为的各种因素,包括温度、时间、Al含量和片层组织的各向异性特性等。值得注意的是,目前的研究对不连续粗化转变与片层组织各向异性特性之间未能建立明确的关系,其过程中的物理冶金原理尚不明确,因此,需要从各向异性角度进一步丰富和完善对TiAl 合金不连续粗化转变机理的认识,这对后续TiAl合金材料的实际应用设计具有重要的意义。最后,分析了TiAl合金不连续粗化行为的热力学驱动力来源,包括化学自由能和界面能,并简述了不连续粗化在温度、时间和Al含量影响下表现出的动力学特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王柯涵
刘涵
宗骁
梁永锋
南海
林均品
丁贤飞
关键词:  TiAl合金  片层组织  不连续粗化  微观组织  相变驱动力    
Abstract: TiAl alloy has excellent specific strength, oxidation resistance and creep resistance, which make it have a broad application prospect in the field of high temperature structural materials, and it is necessary to master the law of its organization stability in the near service condition to realize its engineering application. Lamellar structure is the most important microstructure in TiAl alloy. In this summary, the types of continuous and discontinuous coarsening of TiAl alloy lamellar structure were introduced. Various factors affecting the discontinuous coarsening behavior of TiAl alloy, including temperature, time, Al content and anisotropy of lamellar structure, were discussed. It is worth noting that no clear relationship has been established between the discontinuous coarsening transition and the anisotropy properties of the laminar structure, and the principle of physical metallurgy in the process is still unclear. Therefore, it is necessary to further enrich and improve the understanding of the discontinuous coarsening transition mechanism of TiAl alloy from the perspective of anisotropy. This is of great significance for the subsequent practical application design of TiAl alloy material. Finally, the thermodynamic driving forces of the discontinuous coarsening behavior of TiAl alloy, including che-mical free energy and interfacial energy, were analyzed, and the kinetic characteristics of discontinuous coarsening under the influence of tempe-rature, time and Al content were briefly described.
Key words:  TiAl alloy    lamellar structure    discontinuous coarsening    microstructure    transformation driving force
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TG111.5  
基金资助: 国家自然科学基金(52371015);国家科技重大专项(J2019-VI-0003-0116)
通讯作者:  * 丁贤飞,博士,中国航发北京航空材料研究院铸钛技术中心研究员、硕士研究生导师。目前主要从事钛合金、钛铝金属间化合物等高温结构材料设计、制备与精密成形工艺技术研究。xianfei.ding@biam.ac.cn   
作者简介:  王柯涵,中国航发北京航空材料研究院硕士研究生。目前主要研究领域为钛铝金属间化合物。
引用本文:    
王柯涵, 刘涵, 宗骁, 梁永锋, 南海, 林均品, 丁贤飞. TiAl合金片层组织不连续粗化转变[J]. 材料导报, 2026, 40(1): 24120163-7.
WANG Kehan. Review on Lamellar Structure Discontinuous Coarsening Transition in TiAl Alloy. Materials Reports, 2026, 40(1): 24120163-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120163  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120163
1 Lin J P, Chen G L. Materials China, 2009, 28(1), 31(in Chinese).
林均品, 陈国良. 中国材料进展, 2009, 28(1), 31.
2 Appel F, Brossmann U, Christoph U, et al. Advanced Engineering Materials, 2000, 2(11), 699.
3 Kim Y W. JOM, 1989, 41, 24.
4 Kim Y W. JOM, 1995, 47, 39.
5 Kim Y W, Dimiduk D M. JOM, 1991, 43, 40.
6 Yamaguchi M, Inui H, Ito K. Acta Materialia, 2000, 48(1), 307.
7 Jarvis D, Voss D. Materials Science and Engineering A, 2005, 413, 583.
8 Kim Y W, Kim S L. JOM, 2018, 70(4), 553.
9 Cao S Z, Han J C, Wang H F, et al. Materials Science and Engineering A, 2022, 857, 144053.
10 Yue X A, Shen J, Xiong Y L, et al. Intermetallics, 2022, 140, 107406.
11 Yu Y H, Kou H C, Wang Y R, et al. Scripta Materialia, 2023, 223, 115080.
12 Chen G, Peng Y B, Zheng G, et al. Nature Materials, 2016, 15, 876.
13 Wang J G, Nieh T G. Intermetallics, 2000, 8(7), 737.
14 Schuster J C, Palm M. Journal of Phase Equilibria and Diffusion, 2006, 27, 255.
15 Clemens H, Kestler H. Advanced Engineering Materials, 2000, 2(9), 551.
16 Cui R Y, Pan D X, Liu Z C, et al. Development and Application of Materials, 2024, 39(5), 79(in Chinese).
崔若尧, 潘冬星, 刘志成, 等. 材料开发与应用, 2024, 39(5), 79.
17 Jiang J, Zhao Y F, Deng Q, et al. China Metalforming Equipment & Manufacturing Technology, 2024, 59(3), 117(in Chinese).
江剑, 赵一帆, 邓琦, 等. 锻压装备与制造技术, 2024, 59(3), 117.
18 Zhang M, Zhang S Q, Wang D, et al. Chinese Journal of Materials Research, 2023, 37(6), 417(in Chinese).
张敏, 张思倩, 王栋, 等. 材料研究学报, 2023, 37(6), 417.
19 Ramanujan R V, Maziasz P J, Liu C T. Acta Materialia, 1996, 44(7), 2611.
20 Sharma G, Ramanujan R V, Tiwari G P. Acta Materialia, 2000, 48(4), 875.
21 Huang B Y. Intermetallics of titanium aluminides, Central South University Press, China, 1998(in Chinese).
黄伯云. 钛铝基金属间化合物, 中南工业大学出版社, 1998.
22 Appel F, Paul J D H, Oehring M. Gamma titanium aluminide alloys, science and technology, John Wiley & Sons, USA, 2011.
23 Inkson B J, Clemens H, Marien J. Scripta Materialia, 1998, 38(9), 1377.
24 Cao C X, Li Z X, Sun F S. Transactions of Materials and Heat Treatment, 2001, 22(1), 2(in Chinese).
曹春晓, 李臻熙, 孙福生. 材料热处理学报, 2001, 22(1), 2.
25 Hu R, Wang X Y, Yang J R, et al. Aeronautical Manufacturing Technology, 2017, 60(23-24), 30(in Chinese).
胡锐, 王旭阳, 杨劼人, 等. 航空制造技术, 2017, 60(23-24), 30.
26 Kampe J M, Courtney T H, Leng Y. Acta Metallurgica, 1989, 37(7), 1735.
27 Denquin A, Naka S. Acta Materialia, 1996, 44(1), 353.
28 Chen R R, Wang Q, Yang Y H, et al. Intermetallics, 2018, 93, 47.
29 Yamamoto R, Mizoguchi K, Wegmann G, et al. Intermetallics, 1998, 6(7-8), 699.
30 Gao Z T, Hu R, Wu Y L, et al. Rare Metal Materials and Engineering, 2019, 48(9), 3071(in Chinese).
高子彤, 胡锐, 吴与伦, 等. 稀有金属材料与工程, 2019, 48(9), 3071.
31 Bian C, Wang X M. Foundry Technology, 2015, 36(2), 306(in Chinese).
卞琛, 王新贸. 铸造技术, 2015, 36(2), 306.
32 Wang X P, Zheng Y R. Journal of Materials Engineering, 2000(7), 20(in Chinese).
汪小平, 郑运荣. 材料工程, 2000(7), 20.
33 Shong D S, Kim Y W. Scripta Metallurgica, 1989, 23(2), 257.
34 Tang J C, Huang B Y, He Y H, et al. Transactions of Nonferrous Metals Society of China, 2000, 10(1), 10.
35 Fang L. Investigation on the thermal stabilities of microstructure in fully lamellar high Nb containing TiAl alloys. Ph. D. Thesis, University of Science and Technology Beijing, China, 2017(in Chinese).
方璐. 全片层高 Nb-TiAl 合金显微组织热稳定性研究. 博士学位论文, 北京科技大学, 2017.
36 Manna I, Pabi S K, Gust W. International Materials Reviews, 2001, 46(2), 53.
37 Wang J J, Jiang M, Hao S M. Rare Metal Materials and Engineering, 1998, 27(3), 161(in Chinese).
王继杰, 蒋敏, 郝士明. 稀有金属材料与工程, 1998, 27(3), 161.
38 Livingston J D, Cahn J W. Acta Metallurgica, 1974, 22(4), 495.
39 Ju C P, Fournelle R A. Acta Metallurgica, 1985, 33(1), 71.
40 Mitao S, Bendersky L A. Acta Materialia, 1997, 45(11), 4475.
41 Huang Z W. Intermetallics, 2013, 42, 170.
42 Qin G W, Wang J J, Hao S M. Intermetallics, 1999, 7(1), 1.
43 Jung J Y, Park J K. Acta Materialia, 1998, 46(12), 4123.
44 Qin G W, Oikawa K, Sun Z M, et al. Metallurgical and Materials Tran-sactions A, 2001, 32, 1927.
45 Zhang J, Zhang J W, Zou D X, et al. Journal of Aeronautical Materials, 1996, 16(1), 1(in Chinese).
张继, 张建伟, 邹敦叙, 等. 航空材料学报, 1996, 16(1), 1.
46 Lee D B. Metals and Materials International, 2005, 11(2), 141.
47 Wang J N, Zhu J, Wu J S, et al. Acta Materialia, 2002, 50(6), 1307.
48 Maziasz P J, Ramanujan R V, Liu C T, et al. Intermetallics, 1997, 5(2), 83.
49 Yang J R, Cao B, Wu Y L, et al. Materialia, 2019, 5, 100169.
50 Zghal S, Thomas M, Naka S, et al. Acta Materialia, 2005, 53(9), 2653.
51 Fang L, Ding X F, He J P, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(10), 3095.
52 Niu H Z, Chen X J, Chen Y F, et al. Materials Science and Engineering A, 2020, 784, 139313.
[1] 谢树磊, 欧美琼, 侯坤磊, 王旻, 马颖澈. Mo、W对多晶铸造镍基高温合金组织及应用性能影响的研究进展[J]. 材料导报, 2026, 40(1): 24110085-11.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[4] 巩晓乐, 赵红运, 陈吉华, 严红革. 基于生物医用镁合金的腐蚀行为及其影响因素[J]. 材料导报, 2025, 39(21): 24100045-12.
[5] 王银晨, 常云峰, 秦志伟, 张亮亮, 董红刚, 程亚芳, 郭鹏, 李鹏. TiAl系合金和镍基高温合金连接技术研究进展[J]. 材料导报, 2025, 39(21): 24100004-15.
[6] 王帅, 卿华, 卢照, 姚青荣, 陈泽炜, 王语菡, 张雅, 田伟庆, 谈敦铭, 赵叶曼. 电脉冲处理对TC4钛合金组织及力学性能的影响[J]. 材料导报, 2025, 39(21): 24090220-6.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[9] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[10] 敬学锐, 吴雄, 王森巍, 肖辉, 佘加, 汤爱涛, 王敬丰. 轨交用Mg-9Al-0.1Mn-xCa挤压合金的组织与力学性能研究[J]. 材料导报, 2025, 39(18): 24070127-6.
[11] 夏正辉, 汪丹丹, 丁健翔, 张培根, 田无边, 王丽瑶, 李大平, 魏坤霞, 魏伟, 孙正明. MAX相增强金属基复合材料的研究进展[J]. 材料导报, 2025, 39(17): 24100130-17.
[12] 龚海军, 王玲, 亢红叶, 左乾隆, 安治国, 高正源. 铝合金粉末80 μm大层厚SLM成型熔池形貌与组织演变[J]. 材料导报, 2025, 39(16): 24080006-7.
[13] 李波, 许龙, 杨涵, 杜勇. 均匀化处理对时效强化Al-Mg-Zn-Sc-Zr合金微观组织与性能的影响[J]. 材料导报, 2025, 39(16): 24070104-6.
[14] 刁旺战, 徐祥久, 王萍, 赵卫君, 刘海, 张松. Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性[J]. 材料导报, 2025, 39(14): 24050002-7.
[15] 麻相龙, 曹睿, 徐灏, 周宁, 高爽, 徐志伟. CoCrFeNiMn高熵合金中间层热等静压扩散连接钛/铝接头组织和性能[J]. 材料导报, 2025, 39(12): 24060014-7.
[1] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[2] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[3] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
[4] SHANG Genfeng, HUANG Jiapeng, WANG Hang. Study on Cyclic Oxidation Behavior of Y and La Modified Ni-10Cr-5Al Alloys[J]. Materials Reports, 2018, 32(4): 584 -588 .
[5] LI Yanli, XU Zhuang, LI Hui, KONG Xiangdong, HAN Li, ZHANG Xuena. Preparation of ZnO Thin Films by Electron Beam Annealing Method[J]. Materials Reports, 2017, 31(2): 41 -45 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] CHEN Yajun, YU Jiaqi, ZHAO Jieyu, WANG Fusheng. Research and Development of High Temperature Solid Self-lubricanting Coating Prepared by Magnetron Sputtering[J]. Materials Reports, 2017, 31(3): 32 -37 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] XIE Fei, WANG Dan, WU Ming, ZONG Yue, YUAN Shijiao, SHEN Hongjuan, LI Rui. Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel[J]. Materials Reports, 2017, 31(8): 51 -55 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed