Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120062-7    https://doi.org/10.11896/cldb.24120062
  无机非金属及其复合材料 |
粉煤灰和矿粉对加速碳化养护砂浆中钢筋锈蚀的影响
宋百姓1,3,4,*, 史才军2,*, 柯国军1,4
1 南华大学土木工程学院,高性能特种混凝土湖南省重点实验室,湖南 衡阳 421001
2 湖南大学土木工程学院,长沙 410082
3 新加坡国立大学土木与环境工程系,新加坡 117576
4 中核建高性能混凝土实验室,湖南 衡阳 421001
Effect of Fly Ash and Slag on the Steel Bars Corrosion in Accelerated Carbonation Cured Mortars
SONG Baixing1,3,4,*, SHI Caijun2,*, KE Guojun1,4
1 Key Laboratary in Special High Performance Concrete of Hunan Province, College of Civil Engineering, University of South China, Hengyang 421001, Hunan, China
2 College of Civil Engineering, Hunan University, Changsha 410082, China
3 Department of Civil & Environmental Engineering, National University of Singapore, 117576, Singapore
4 Laboratory in high performance concrete of China nuclear construction, Hengyang 421001, Hunan, China
下载:  全 文 ( PDF ) ( 13745KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 加速碳化养护因兼具减少水泥基材料碳足迹与提升耐久性的双重优势,近年来备受关注。然而,粉煤灰和矿粉对加速碳化养护水泥基材料耐久性的影响,尤其是对钢筋锈蚀的影响尚不清楚。基于此,本工作通过电化学等手段,系统地研究了粉煤灰和矿粉对加速碳化养护砂浆中钢筋在三种工况下腐蚀的影响:(1)模拟孔溶液;(2)氯离子溶液干湿循环;(3)氯离子与杂散电流耦合作用。结果表明,粉煤灰和矿粉延长了钢筋在加速碳化养护砂浆中形成稳定钝化膜的时间,并降低了钢筋锈蚀的临界氯离子浓度;随粉煤灰和/或矿粉掺量的增加,加速碳化养护砂浆中的钢筋抗锈蚀性能逐渐下降,特别是当其掺量超过25%时。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋百姓
史才军
柯国军
关键词:  碳化养护  粉煤灰  矿粉  临界氯离子浓度  钢筋锈蚀    
Abstract: Accelerated carbonation curing has attracted increasing attentions as its advantages such as decreasing the carbon footprint and enhancing the durability of cement-based materials. However, the effects of fly ash and slag on the durability of accelerated carbonation cured cement-based materials, in particular the corrosion behaviors of rebars is unclear yet. To systematically study the effects of fly ash and slag on the corrosion resistance of accelerated carbonation cured cement mortars, the corrosion behaviors of rebars were measured in three corrosion environments, including simulated pore solution, wetting-drying cycling in chloride ions solution as well as under the coupling action of stray current and chloride ions. The results show that the addition of fly ash and slag prolongs the time for the steel bars to form stable passive film and decreases the chloride threshold concentration in accelerated carbonation cured mortars. The reinforcement corrosion resistance of the accelerated carbonation cured mortars decreases with the increase of fly ash and/or slag content, especially when its dosage exceeds 25%.
Key words:  carbonation curing    fly ash    slag    chloride threshold concentration    reinforcement corrosion
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TQ172  
基金资助: 湖南省自然科学基金(2024JJ5333);湖南省教育厅优秀青年项目(22B0443)
通讯作者:  * 宋百姓,博士,讲师,博士期间师从史才军教授,主要从事水泥基材料耐久性和低碳水泥基材料的研究。songbaixing123@163.com
史才军,博士,湖南大学首席教授,国家特聘专家,亚洲混凝土联合会主席,博士研究生导师。2024年斯坦福大学全球2%顶尖科学家榜单-Building & Construction领域排名Top 1。长期从事水泥基材料的设计和测试等方面的研究。cshi@hnu.edu.cn   
引用本文:    
宋百姓, 史才军, 柯国军. 粉煤灰和矿粉对加速碳化养护砂浆中钢筋锈蚀的影响[J]. 材料导报, 2026, 40(1): 24120062-7.
SONG Baixing. Effect of Fly Ash and Slag on the Steel Bars Corrosion in Accelerated Carbonation Cured Mortars. Materials Reports, 2026, 40(1): 24120062-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120062  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120062
1 Song B X, Shi C J, Hu X, et al. Construction and Building Materials, 2021, 288, 123113.
2 Shi C J, He F Q, Wu Y. Construction and Building Materials, 2012, 26(1), 257.
3 Rostami V, Shao Y, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345.
4 Chang J, Gu Y, Ansari W S. Construction and Building Materials, 2020, 251, 118880.
5 Qin L, Gao X J. Waste Management, 2019, 89, 254.
6 Song B X, Liu S H, Hu X, et al. Cement and Concrete Composites, 2022, 134, 104786.
7 Zhang D, Shao Y. Journal of CO2 Utilization, 2018, 27, 137.
8 Wang L, Chen S S, Tsang D C W, et al. Journal CO2 Utilization, 2017, 18, 107.
9 Zhang D, Shao Y. Construction and Building Materials, 2016, 113, 134.
10 Xian X P, Zhang D, Lin H, et al. Journal CO2 Utilization, 2022, 56, 101861.
11 Song B X, Hu X, Pang S D, et al. Journal of Sustainable Cement-based Materials, 2024, 13, 1063.
12 Gieergiczny Z. Cement and Concrete Research, 2019, 124, 105826.
13 Thimas M D A, Hooton R D, Scoot A, et al. Cement and Concrete Research, 2012, 42(1), 1.
14 Choi Y, Kim J, Lee K. Corrosion Science, 2006, 48(7), 1733.
15 Song B X, Hu X, Liu S H, et al. Cement and Concrete Composites, 2022, 134, 104793.
16 Jiang F J. Electrochemical analysis of concrete cement hydration, chloride diffusion and steel corrosion. Ph. D. Thesis, Dalian University of Technology, China, 2020 (in Chinese).
姜凤娇. 混凝土水泥水化、氯离子扩散及钢筋锈蚀的电化学分析. 博士学位论文, 大连理工大学, 2020.
17 Montermor M F, SimeÕ A M P, Feffeira M G S. Cement and Concrete Composites, 2003, 25(4-5), 491.
18 Cao C N. Principles of electrochemistry of corrosion, Chemical Industry Press, China, 2008, pp. 75 (in Chinese).
曹楚南. 腐蚀电化学原理, 化学工业出版, 2008, pp. 75.
19 Moreno M, Morris W, Alvarez M G, et al. Corrosion Science, 2004, 46(11), 2681.
20 Williamson J, Isgor O B. Corrosion Science, 2016, 106, 82.
21 Song H W, Ann K Y. Corrosion Science, 2007, 49, 4113.
22 Shi C J, Hu S. Cement and Concrete Research, 2003, 33(11), 1851.
23 Geng J. The research on the deteriorated mechanism of reinforced concrete in stray currents and chloride ion coexisted corrosion environment. Ph. D. Thesis, Wuhan University of Technology, China, 2008 (in Chinese).
耿健. 杂散电流与氯离子共存环境下钢筋混凝土劣化机理的研究. 博士学位论文, 武汉理工大学, 2008.
24 Du F Y, Jin Z Q, She W, et al. Construction and Building Materials, 2020, 263, 12099.
[1] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[2] 李珂嘉, 殷志刚, 王彬彬, 李瑶. 粉煤灰基X型沸石的合成及在CO2捕集分离中的应用[J]. 材料导报, 2025, 39(24): 24120034-10.
[3] 朱元浪, 张恒武, 吕凯越, 杨鄯旭, 张式玉, 王史以诺, 谢柏军, 高嵩. 基于逾渗理论的实海环境再生混凝土抗Cl-渗透特性研究[J]. 材料导报, 2025, 39(23): 24100208-8.
[4] 于海明, 王佳愔, 程卫民, 谢瑶, 綦晗. 近10年我国矿用高效抑尘剂研究前沿动向分析[J]. 材料导报, 2025, 39(23): 24110146-8.
[5] 张江石, 柳鹏程, 方磊, 韩方伟, 佟林全, 刘建国, 梁云飞, 杨涓. AEO5/SLS二元泡沫抑尘剂复配与润煤性能研究[J]. 材料导报, 2025, 39(22): 24120064-7.
[6] 杨绿峰, 朱恩. 粉煤灰混凝土氯离子扩散系数的广源大样本模型[J]. 材料导报, 2025, 39(21): 24100140-7.
[7] 朱绘美, 刘毓, 李辉. 微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展[J]. 材料导报, 2025, 39(20): 24090095-7.
[8] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[9] 李曈, 王庆贺, 任庆新. 钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理[J]. 材料导报, 2025, 39(19): 24060141-7.
[10] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[11] 李成, 刘国建, 方有珍, 张云升. 再论钢筋腐蚀电位与极化电阻相关性[J]. 材料导报, 2025, 39(17): 24070021-6.
[12] 涂义亮, 任思雨, 赵林, 凌玲, 柴贺军. 玄武岩纤维-粉煤灰提升水泥土抗剪性能试验研究[J]. 材料导报, 2025, 39(16): 24050216-8.
[13] 兰亚坤, 李丹, 丁立洋, 董庭轩, 李依鹏, 郭生伟. 粉煤灰基防鼠咬PVC线缆护套材料的制备与性能研究[J]. 材料导报, 2025, 39(12): 24060115-6.
[14] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[15] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[1] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[2] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[3] ZHANG Libo, WANG Lu, QU Wenwen, XU Shengming, ZHANG Jialin. Research and Development of Petroleum Hydrodesulfurization Catalysts with Al2O3-based Supports[J]. Materials Reports, 2018, 32(5): 772 -779 .
[4] SHI Yu, GAO Haiming, LI Guang, LI Xiang. High Frequency Induction Brazing Process of Copper-Steel and Its Effects on Microstructure and Electrical Conductivity of Weld Joint[J]. Materials Reports, 2018, 32(6): 909 -914 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy[J]. Materials Reports, 2018, 32(6): 1026 -1031 .
[6] . Grain Growth Kinetics of Rolled ZK61 Magnesium Alloy Sheet[J]. Materials Reports, 2017, 31(4): 60 -64 .
[7] REN Jingkun, LIU Weipeng, LI Zhanfeng, SUN Qinjun, WANG Hua, SHI Fang, HAO Yuying. Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells[J]. Materials Reports, 2017, 31(17): 133 -137 .
[8] WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar[J]. Materials Reports, 2017, 31(24): 20 -25 .
[9] HOU Dianxin, LU Yuan, LIU Zhiwei, HU Jie. Temperature Rising in VO2 Thin Films Under Irradiation of Mid-infrared Laser Based on External Heat Source[J]. Materials Reports, 2017, 31(24): 91 -95 .
[10] NIU Ditao, LU Yao, LIU Xiguang. A Review on Sulfuration Properties of Concrete[J]. Materials Reports, 2017, 31(23): 163 -170 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed