Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24120064-7    https://doi.org/10.11896/cldb.24120064
  高分子与聚合物基复合材料 |
AEO5/SLS二元泡沫抑尘剂复配与润煤性能研究
张江石1, 柳鹏程1, 方磊1, 韩方伟2,*, 佟林全1,3, 刘建国4, 梁云飞1, 杨涓1
1 中国矿业大学(北京)应急管理与安全工程学院,北京 100083
2 辽宁工程技术大学安全科学与工程学院,辽宁 葫芦岛 125105
3 国家卫生健康委粉尘危害工程防护重点实验室,北京 102308
4 北京科技大学土木与资源工程学院,北京 100083
Study on the Formulation and Coal-wetting Performance of AEO5/SLS Binary Foam Dust Suppressant
ZHANG Jiangshi1, LIU Pengcheng1, FANG Lei1, HAN Fangwei2,*, TONG Linquan1,3, LIU Jianguo4, LIANG Yunfei1, YANG Juan1
1 School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 College of Safety Science and Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China
3 Key Laboratory of Dust Hazard Engineering Protection, National Health Commission, Beijing 102308, China
4 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 18269KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究脂肪醇聚氧乙烯醚(AEO5)/十二烷基磺酸钠(SLS)二元泡沫最佳配比以增强其降尘性能,采用物理实验和分子模拟相结合的方法对二元泡沫的稳定性和润湿性进行研究。通过泡沫稳定性和静态接触角评估二元泡沫抑尘剂的最佳配比与润湿长焰煤性能,并通过实际工程应用证明其有效性。使用分子动力学(MD)和密度泛函理论(DFT)计算分子间相互作用、氢键性质和静电势等。研究结果表明,AEO5/SLS最佳复配比例为6∶30,在该配比下消泡用时最短为156 min,溶液静态接触角最小为17.94°,全尘和呼吸性粉尘的降尘效率最高分别为94%和87%。通过对实验与分子模拟结果进行关联性分析,得出在最佳配比下表面活性剂分子和水分子间的相互作用能最大,泡沫液膜最厚,稳定性最好。同时,该配比下泡沫液膜张力最小,在SLS分子和长焰煤分子结合时可以给水分子提供更多吸附位点,增强其润湿性。本研究可为新型多元泡沫抑尘剂的研发提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张江石
柳鹏程
方磊
韩方伟
佟林全
刘建国
梁云飞
杨涓
关键词:  泡沫降尘  煤矿粉尘  复配比例  泡沫稳定性  泡沫润湿性    
Abstract: To investigate the optimal binary foam ratio of fatty alcohol polyoxyethylene ether (AEO5) and sodium lauryl sulfate (SLS) for enhancing dust suppression performance, a combination of physical experiments and molecular simulations was employed to study the stability and wettability of the binary dust-suppressing foam. Foam stability and static contact angle measurements were used to evaluate the optimal ratio of the binary foam suppressant and its wetting performance on long-flame coal. Its effectiveness was further validated through practical engineering applications. Molecular dynamics (MD) and density functional theory (DFT) calculations were used to analyze intermolecular interactions, hydrogen bond properties, and electrostatic potential. The results show that the optimal AEO5/SLS ratio is 6∶30, under which the shortest defoaming time is 156 min, and the minimum static contact angle of the solution is 17.94°. The dust suppression efficiencies for total dust and respirable dust reached maximum values of 94% and 87%, respectively. Correlation analysis of experimental and molecular simulation results indicates that at the optimal ratio, the interaction energy between surfactant molecules and water molecules is maximized, resulting in the thickest foam liquid film and the highest stability. Additionally, under this ratio, the foam liquid film exhibits the lowest surface tension, providing more adsorption sites for water molecules when SLS molecules interact with long-flame coal molecules, thereby enhancing wettability. This study provides theoretical gui-dance for the development of novel multi-component foam dust suppressants.
Key words:  foam dust suppression    coal mine dust    blending ratio    foam stability    foam wettability
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TD714.4  
基金资助: 国家自然科学基金(52474205;52204198)
通讯作者:  *韩方伟,博士,辽宁工程技术大学安全科学与工程学院副教授、博士研究生导师。目前主要从事安全科学与技术、职业安全与健康等方面的研究。hanfangwei@lntu.edu.cn   
作者简介:  张江石,博士,中国矿业大学(北京)应急管理与安全工程学院教授、博士研究生导师。目前主要从事矿山粉尘与职业危害智能化防治、矿山安全工程及智能化应用、新型抑尘剂与抑尘技术研发等方面的研究。
引用本文:    
张江石, 柳鹏程, 方磊, 韩方伟, 佟林全, 刘建国, 梁云飞, 杨涓. AEO5/SLS二元泡沫抑尘剂复配与润煤性能研究[J]. 材料导报, 2025, 39(22): 24120064-7.
ZHANG Jiangshi, LIU Pengcheng, FANG Lei, HAN Fangwei, TONG Linquan, LIU Jianguo, LIANG Yunfei, YANG Juan. Study on the Formulation and Coal-wetting Performance of AEO5/SLS Binary Foam Dust Suppressant. Materials Reports, 2025, 39(22): 24120064-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120064  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24120064
1 Department of Planning, Development and Information Technology of the National Health Commission. Chinese Journal of Viral Diseases, 2024, 14(4), 317 (in Chinese).
国家卫生健康委员会规划发展与信息化司. 中国病毒病杂志, 2024, 14(4), 317.
2 Li D W, Sui J J, Zhao Z, et al. Mining Safety and Environmental Protection, 2024, 51(6), 1(in Chinese).
李德文, 隋金君, 赵政, 等. 矿业安全与环保, 2024, 51(6), 1.
3 Zhao X, Zhao X, Han F, et al. Journal of the Air & Waste Management Association, 2021, 71(12), 1568.
4 Jiskani I M, Cai Q, Zhou W, et al. Resources Policy, 2021, 71, 102007.
5 Ding H, Jiang M, Li D, et al. Frontiers in Pharmacology, 2021, 12, 662664.
6 Huang R, Tao Y, Chen J, et al. Sustainability, 2024, 16(10), 4038.
7 Zhang H, Han W, Xu Y, et al. Journal of Healthcare Engineering, 2021, 2021(1), 5574579.
8 Wang Y, Jiang Z. Case Studies in Thermal Engineering, 2021, 25, 100896.
9 Lu X X, Zhu H Q, Wang D M. Journal of Environmental Science and Health, 2019, 54(1), 39.
10 Guo Q, Ren W, Shi J. Tunnelling and Underground Space Technology, 2019, 89, 170.
11 Shen Z, Ao Z, Wang Z, et al. International Journal of Environmental Research and Public Health, 2023, 20(2), 934.
12 Zhang Q, Wang H, Han H, et al. Fuel, 2023, 353, 129036.
13 Xu R, Yu H, Dong H, et al. International Journal of Biological Macromolecules, 2023, 246, 125645.
14 Wang K, Zhang Y, Cai W, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 625, 126850.
15 Qiu Y, Wang Y, Liu Y, et al. Applied Rheology, 2023, 33(1), 20230108.
16 Li H, Xu P, Liu S, et al. Process Safety and Environmental Protection, 2024, 187, 1354.
17 Nie W, Yuan M, Bao Q, et al. Advanced Powder Technology, 2022, 33(3), 103485.
18 Jin H, Zhang Y, Zhang M, et al. Arabian Journal of Chemistry, 2024, 17(3), 105637.
19 Han F, Yang P, Zhao Y, et al. Powder Technology, 2024, 442, 119869.
20 Zhang Y, Cui Y N, Yan J J, et al. Mining Safety and Environmental Protection, 2022, 49(2), 35 (in Chinese).
张洋, 崔豫楠, 闫晶晶, 等. 矿业安全与环保, 2022, 49(2), 35.
21 He Z, Wang J, Liao B, et al. Gels, 2022, 8(7), 442.
22 Mhatre C V, Wardzala J J, Shukla P B, et al. Nanomaterials, 2023, 13(11), 1793.
23 Kalapurakal R A M, Rocha B C, Vashisth H. Materials, 2023, 7(2), 535.
24 Xu C H. Study on economical and efficient dust suppression foaming agent for mining based on synergistic effect of surfactant and polymer stabilizer. Ph. D. Thesis, China University of Mining and Technology, China, 2019 (in Chinese).
徐超航. 基于表面活性剂-高分子稳定剂协同效应的矿用经济高效抑尘发泡剂研究. 博士学位论文, 中国矿业大学, 2019.
25 Ozcelik M, Kulozik U. Foods, 2023, 12(8), 1673.
26 Korlyukov A A, Malinska M, Vologzhanina A V, et al. Journal from the International Union of Crystallography, 2020, 7(1), 71.
27 Tang A, Huan Q, Tang S, et al. Royal Society of Chemistry Advances, 2021, 11(35), 21832.
[1] 于海明, 王佳愔, 程卫民, 谢瑶, 綦晗. 近10年我国矿用高效抑尘剂研究前沿动向分析[J]. 材料导报, 2025, 39(23): 24110146-8.
[2] 盛友杰, 彭云川, 张含灵, 阎灿彬, 李杨, 马文智. SiO2纳米颗粒对环保型泡沫灭火剂稳定性的影响[J]. 材料导报, 2023, 37(18): 22050272-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed