Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070021-6    https://doi.org/10.11896/cldb.24070021
  无机非金属及其复合材料 |
再论钢筋腐蚀电位与极化电阻相关性
李成1, 刘国建1,*, 方有珍1, 张云升2,3
1 苏州科技大学土木工程学院,江苏 苏州 215011
2 东南大学材料科学与工程学院,南京 211189
3 兰州理工大学土木工程学院,兰州 730050
Study on the Relationship Between Corrosion Potential and Polarization Resistance of Steel Bar
LI Cheng1, LIU Guojian1,*, FANG Youzhen1, ZHANG Yunsheng2,3
1 School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4950KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球基础设施的日益老化及环境侵蚀的加剧,及时有效地监测和评估钢筋的腐蚀状态显得尤为关键。本工作利用Origin软件Digitizer工具,获取了54篇文献中的4 319组数据,结合本课题组的493组数据,综合分析了钢筋腐蚀过程中腐蚀电位(Ecorr)与极化电阻(Rp)间的统计关系。结果显示,腐蚀电位与极化电阻之间具有显著相关性,且极化电阻在不同电位区间呈现不同的概率密度分布,对应了钢筋腐蚀各阶段存在的不同界面反应。在相同的腐蚀概率基准下,本研究得到的钢筋电位值与ASTM C876标准之间存在一定的偏差。这一发现为ASTM C876标准的修订提供了依据,也为相关基础设施的维护和安全管理提供了支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李成
刘国建
方有珍
张云升
关键词:  钢筋锈蚀  腐蚀电位  极化电阻  统计关系    
Abstract: As global infrastructure continues to age and environmental erosion intensifies, timely and effective monitoring and assessment of rebar corrosion status becomes crucial. Utilizing the Digitizer tool in Origin software, 4 319 sets of data extracted from 54 literature and 493 sets of data from the research team, were used to comprehensively analyze the statistical relationship between corrosion potential (Ecorr) and polarization resistance (Rp) during rebar corrosion. The results show a significant and consistent correlation between corrosion potential and polarization resis-tance. Additionally, the probability density distribution of polarization resistance varies across different potential intervals, corresponding to diffe-rent interface reactions at various stages of rebar corrosion. Under the same corrosion probability benchmark, the rebar potential values obtained in this study deviate from those specified in the ASTM C876 standard. The findings provide a basis for revising the ASTM C876 standard and support the maintenance and safety management of related infrastructure.
Key words:  steel corrosion    corrosion potential    polarization resistance    statistical correlation
发布日期:  2025-08-28
ZTFLH:  TU375  
  TG172  
基金资助: 国家自然科学基金(52008284)
通讯作者:  *刘国建,博士,苏州科技大学土木工程学院副教授、硕士研究生导师。主要研究方向为严酷环境下钢筋腐蚀行为与机理、结构混凝土耐久性、水泥基材料微结构表征等。liuguojian@usts.edu.cn   
作者简介:  李成,苏州科技大学土木工程学院硕士研究生,在刘国建副教授指导下开展研究。主要从事钢筋锈蚀、严酷环境下混凝土耐久性研究。
引用本文:    
李成, 刘国建, 方有珍, 张云升. 再论钢筋腐蚀电位与极化电阻相关性[J]. 材料导报, 2025, 39(17): 24070021-6.
LI Cheng, LIU Guojian, FANG Youzhen, ZHANG Yunsheng. Study on the Relationship Between Corrosion Potential and Polarization Resistance of Steel Bar. Materials Reports, 2025, 39(17): 24070021-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070021  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070021
1 Angst U M. Materials and Structures, 2018, 51, 4.
2 Liu G J, Zhang Y S, Liu C, et al. Materials Reports, 2021, 35(14), 14072(in Chinese).
刘国建, 张云升, 刘诚, 等. 材料导报, 2021, 35(14), 14072.
3 Shi J, Geng Z, Zhou X. Cement and Concrete Composites, 2024, 152, 105666.
4 Shen F, Liu G, Liu C, et al. Journal of Materials Research and Technology, 2024, 29, 1305.
5 ASTM International. Standard test method for corrosion potentials of uncoated reinforcing steel in concrete:ASTM C876-22b, 2022.
6 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standards for reinforcement detection in concrete:JGJ/T 152-2019, China, 2019(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土中钢筋检测技术标准:JGJ/T 152-2019, 2019.
7 Song H W, Saraswathy V. International Journal of Electrochemical Science, 2007, 2, 1.
8 Assouli B, Ballivy G, Rivard P. Corrosion Engineering Science and Technology, 2008, 43(1), 93.
9 Gu P, Beaudoin J J. Obtaining effective half-cell potential measurements in reinforced concrete structures. Construction Technology Update No. 18, Canada, 1998, pp. 1.
10 Sirivivatnanon V, Xue C, Khatri R. Construction and Building Materials, 2023, 393, 132071.
11 Carino N J. Journal of Performance of Constructed Facilities, 1999, 13, 96.
12 Fan L, Meng W, Teng L, et al. Construction and Building Materials, 2020, 238, 117709.
13 Adriman R, Ibrahim I B M, Huzni S, et al. Case Studies in Construction Materials, 2022, 16, e00854.
14 Angst U, Elsener B, Larsen C K, et al. Cement and Concrete Research, 2009, 39(12), 1122.
15 Angst U, Elsener B, Larsen C K, et al. Electrochimica Acta, 2011, 56(17), 5877.
16 Angst U, Elsener B, Larsen C K, et al. Corrosion Science, 2011, 53(4), 1451.
17 Aperador W, de Gutiérrez R M, Bastidas D M. Corrosion Science, 2009, 51(9), 2027.
18 Boubitsas D, Tang L. Materials and Structures, 2014, 48(8), 2641.
19 Duffó G S,Farina S B. Cement and Concrete Research, 2016, 88, 211.
20 Feng X, Lu X, Zuo Y, et al. Corrosion Science, 2016, 103, 66.
21 Gürten A A, Kayakırılmaz K, Erbil N. Construction and Building Materials, 2007, 21(3), 669.
22 Hay R, Ostertag C P. Corrosion Science, 2019, 153, 213.
23 Hay R, Ostertag C P. Cement and Concrete Composites, 2020, 110, 103573.
24 Jiang L, Liu H, Wang Y, et al. Materials Chemistry and Physics, 2015, 164, 23.
25 Koga G Y, Albert B, Nogueira R P. Electrochemistry Communications, 2018, 94, 1.
26 Koleva D A, Hu J, Fraaij A L A, et al. Corrosion Science, 2006, 48(12), 4001.
27 Li C, Jiang L. Journal of Building Engineering, 2022, 59, 105132.
28 Li C, Jiang L, Li S. Cement and Concrete Research, 2020, 131, 106018.
29 Liu R, Jiang L, Huang G, et al. Construction and Building Materials, 2016, 113, 90.
30 Martínez-Rosales R I, Miranda-Vidales J M, Narváez-Hernández L, et al. KSCE Journal of Civil Engineering, 2020, 24(12), 3810.
31 Meira G R, Andrade C, Vilar E O, et al. Construction and Building Materials, 2014, 55, 289.
32 Monticelli C, Natali M E, Balbo A, et al. Cement and Concrete Research, 2016, 80, 60.
33 Monticelli C, Natali M E, Balbo A, et al. Cement and Concrete Research, 2016, 87, 53.
34 Niu D, Zhang L, Fu Q, et al. Construction and Building Materials, 2020, 238, 117685.
35 Pradhan B. Construction and Building Materials, 2014, 72, 398.
36 Rivera-Corral J O, Fajardo G, Arliguie G, et al. Construction and Building Materials, 2017, 147, 815.
37 Shi J, Ming J, Sun W. Cement and Concrete Composites, 2018, 92, 110.
38 Shi J, M. Wu M, J. Ming J. Cement and Concrete Composites, 2022, 132, 104628.
39 Tittarelli F, A. Mobil Ai, C. Giosuè C, et al. Corrosion Science, 2018, 134, 64.
40 Wang Y, Liu C, Wang Y, et al. Construction and Building Materials, 2019, 214, 158.
41 Wei J, Fu X, Dong J, et al. Journal of Materials Science & Technology, 2012, 28(10), 905.
42 Xu J, Jiang L, Wang W, et al. Construction and Building Materials, 2011, 25(2), 663.
43 Xu J, Jiang L, Xing F. Materials and Corrosion, 2010, 61(9), 802.
44 Alonso C, Andrade C, Castellote M. Cement and Concrete Research, 2000, 30, 1047.
45 Dehwah H A F, Maslehuddin M, Austin S A. ACI materials journal, 2002, 99(3), 227.
46 Alonso C, Castellote M, Andrade C. Electrochimica Acta, 2002, 47, 3469.
47 Abubakar A F A, Zuo X B, Zou S, et al. Journal of Sustainable Cement-Based Materials, 2020, 9, 112.
48 Babaee M, Khan M S H, Castel A. Cement and Concrete Composites, 2018, 85, 32.
49 Cheng A, Huang R, Wu J K, et al. Construction and Building Materials, 2005, 19(5), 404.
50 Jiang L, Huang G, Xu J, et al. Construction and Building Materials, 2012, 30, 516.
51 Jiang L, Liu H, Chu H, et al. Construction and Building Materials, 2014, 73, 699.
52 Jiang L, Liu R, Mo L, et al. Magazine of Concrete Research, 2013, 65(5), 319.
53 Koga G Y, Comperat P, Albert B, et al. Cement and Concrete Research, 2019, 122, 212.
54 Koga G Y, Comperat P, Albert B, et al. Corrosion Science, 2020, 166, 108469.
55 Liu M, Cheng X, Li X, et al. Construction and Building Materials, 2015, 93, 884.
56 Liu R, Jiang L, Xu J, et al. Construction and Building Materials, 2014, 56, 16.
57 Ming J, Wu M, Shi J. Cement and Concrete Composites, 2021, 123, 104178.
58 Otieno M, Beushausen H, Alexander M. Cement and Concrete Research, 2016, 79, 373.
59 Shang B, Ma Y, Meng M, et al. Materials and Corrosion, 2018, 69(12), 1800.
60 Shi J, Ming J, Wu M. Cement and Concrete Composites, 2020, 110, 103587.
61 Shi W, Najimi M, Shafei B. Cement and Concrete Research, 2020, 135, 160121.
62 Vera R, Villarroel M, Carvajal A M, et al. Materials Chemistry and Physics, 2009, 114(1), 467.
63 Xiong C, Li W, Jin Z, et al. Corrosion Science, 2018, 139, 275.
64 You N, Shi J, Zhang Y. Corrosion Science, 2022, 205, 110438.
65 Zheng H, Dai J G, Poon C S, et al. Cement and Concrete Research, 2018, 108, 46.
66 Li L, Sagues A A. Corrosion Science Section, 2001, 57(1), 19.
67 Pech-Canul M A, Castro P. Cement and Concrete Research, 2002, 32, 491.
68 Qian R S. Evolution laws of ions in modern concrete pore solutions and numerical simulation. Ph.D.Thesis, Southeast University, China, 2018(in Chinese).
钱如胜.现代混凝土孔溶液离子演变规律及数值模拟. 博士学位论文, 东南大学, 2018.
69 Ives D J G. Reference electrodes theory and practice, Academic Press, USA, 1961, pp. 103.
70 Andrade C, Alonso C. Materials and Structures, 2004, 37, 623.
71 Elsener B, Andrade C, Gulikers J, et al. Materials and Structures, 2003, 36, 461.
72 Andrade C. Cement and Concrete Research, 2023, 165, 107085.
73 Liu G, Zhang Y, Ni Z, et al. Construction and Building Materials, 2016, 115, 1.
74 Moon H Y, Shin K J. Construction and Building Materials, 2007, 21, 98.
75 Angst U M, Elsener B, Larsen C K, et al. Corrosion Science, 2011, 53, 1451.
76 Stefanoni M, Angst U, Elsener B. Cement and Concrete Research, 2018, 103, 35.
77 Lambert P, Page C L, PVassie P R W. Materials and Structures, 1991, 24, 351.
78 Liu G J, Zhu H, Zhang Y S, at al. Journal of the Chinese Ceramic Society, 2022, 50(2), 413(in Chinese).
刘国建, 朱航, 张云升, 等. 硅酸盐学报, 2022, 50(2), 413.
79 Yousif H A, Al-Hadeethi F F, Al-Nabilsy B, at al. International Journal of Corrosion, 2014, 2014, 1.
80 Birblis N, Cherry B W. In:International Conference on Durability of Building Materials and Components. Brisbane, 2002, pp. 1.
81 Bertocci U, Huet F, Nogueira R P, et al. Corrosion, 2002, 58(4), 337.
[1] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[2] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[3] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[4] 乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究[J]. 材料导报, 2022, 36(19): 21010008-6.
[5] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[6] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[7] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[8] 达波, 余红发, 麻海燕, 吴彰钰. 全珊瑚海水混凝土中不同种类钢筋的防腐蚀性能[J]. 材料导报, 2019, 33(12): 2002-2008.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed