Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24080087-6    https://doi.org/10.11896/cldb.24080087
  高分子与聚合物基复合材料 |
二喹喔啉并吩嗪类延迟荧光材料的合成及电致发光性质
唐凌君1, 章博1, 兰昊1, 曹远哲1, 袁国2, 胡英元1, 赵鑫1,*
1 苏州科技大学化学与生命科学学院,江苏 苏州 215009
2 苏州大学功能纳米与软物质研究院江苏省碳基功能材料与器件重点实验室,江苏 苏州 215123
Synthesis and Electroluminescent Properties of Diquinoxalino Phenazine-based Delayed Fluorescence Material
TANG Lingjun1, ZHANG Bo1, LAN Hao1, CAO Yuanzhe1, YUAN Guo2, HU Yingyuan1, ZHAO Xin1,*
1 School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
下载:  全 文 ( PDF ) ( 7852KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以具有大共轭平面、强刚性、强吸电子特性的二喹喔啉并[2,3-a:2′,3′-c]吩嗪(TQC)为受体单元,在其2、3、8、9、14、15位引入六个三苯胺(TPA)作供体,设计合成了一种结构新颖的红色热激活延迟荧光(Thermally activated delayed fluorescence,TADF)材料HTPA-TQC。研究表明,HTPA-TQC具有扭曲的分子结构(二面角50°左右),前线分子轨道分离与交盖程度适宜,具有较小的单重态和三重态能级差(ΔEST)以及较大的振子强度(f )。瞬态光谱表明,HTPA-TQC的延迟荧光寿命为7.85 μs,具有典型的延迟荧光特性。紫外光谱和溶剂极性实验表明,HTPA-TQC具有显著的分子内电荷转移(ICT)效应。其光致发射波长达到579 nm,光致发光量子产率(PLQY)达到65.38%。基于HTPA-TQC的器件成功实现了红光发射,电致发射波长达到608 nm,最大外量子效率(EOEmax)为0.19%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐凌君
章博
兰昊
曹远哲
袁国
胡英元
赵鑫
关键词:  延迟荧光  二喹喔啉并吩嗪  有机发光二极管  电致发光    
Abstract: Anovel red thermally activated delayed fluorescence (TADF) material, HTPA-TQC, was designed and synthesized by incorporating six triphenylamine (TPA) donor units at 2, 3, 8, 9, 14, and 15 positions of the receptor unit, diquinoxalino[2, 3-a:2′, 3′-c]phenazine (TQC), which possesses a large conjugated plane, strong rigidity, and strong electron-withdrawing properties. Studies show that HTPA-TQC exhibits twisted molecular structure with a dihedral angle of approximately 50°, and the separation and overlap of frontier molecular orbitals are well-ba-lanced. Consequently, it possesses a small singlet-triplet energy gap (ΔEST) and a high oscillator strength (f ). Transient spectroscopy reveals that the delayed fluorescence lifetime of HTPA-TQC is 7.85 μs, indicating typical delayed fluorescence characteristics. UV spectroscopy and solvent polarity experiments demonstrate a significant intramolecular charge transfer (ICT) effect in HTPA-TQC. Its photoluminescence emission wavelength reaches 579 nm, with a photoluminescence quantum yield (PLQY) of 65.38%. Devices based on HTPA-TQC successfully achieved red-light emission, with an emission wavelength of 608 nm and a maximum external quantum efficiency (EOEmax) of 0.19%.
Key words:  delayed fluorescence    diquinoxalino[2,3-a:2′,3′-c]phenazine    organic light-emitting diode    electroluminescence
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  O621.22  
基金资助: 国家自然科学基金(21905048);江苏省研究生研究创新项目(KYCX24_3462)
通讯作者:  * 赵鑫,苏州科技大学教授、硕士研究生导师。目前主要从事有机光电功能材料的设计、合成及应用等方面的研究。zhaoxinsz@usts.edu.cn   
作者简介:  唐凌君,苏州科技大学化学与生命科学学院硕士研究生,在赵鑫教授指导下研究有机光电材料的合成与性能。
引用本文:    
唐凌君, 章博, 兰昊, 曹远哲, 袁国, 胡英元, 赵鑫. 二喹喔啉并吩嗪类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2026, 40(1): 24080087-6.
TANG Lingjun. Synthesis and Electroluminescent Properties of Diquinoxalino Phenazine-based Delayed Fluorescence Material. Materials Reports, 2026, 40(1): 24080087-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080087  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24080087
1 Fan X, Hao X, Huang F, et al. Advanced Science, 2023, 10 (28), e2303504.
2 Xie F, Wu P, Zou S, et al. Advanced Electronic Materials, 2019, 6(1), 1900843.
3 Kothavale S, Kim S C, Cheong K, et al. Advanced Materials, 2023, 35(13), 2208602.
4 Wang D H, Xie F M, Wei H X, et al. Materials Reports, 2023, 37(4), 215(in Chinese).
王达浩, 谢凤鸣, 魏怀鑫, 等. 材料导报, 2023, 37(4), 215.
5 Yang T, Cheng Z, Li Z, et al. Advanced Functional Materials, 2020, 30(34), 2002681.
6 Tang C W, VanSlyke S A. Applied Physics Letters, 1987, 51(12), 913.
7 Zampetti A, Minotto A, Cacialli F. Advanced Functional Materials, 2019, 29(44), 1905825.
8 Wang K, Shi Y Z, Zheng C J, et al. ACS Applied Materials & Interfaces, 2018, 10(37), 31515.
9 Uoyama H, Goushi K, Shizu K, et al. Nature, 2012, 492(7428), 234.
10 Sereviius T, Skaisgiris R, Kreiza G, et al. The Journal of Physical Chemistry A, 2021, 125(7), 1637.
11 Yang M, Park I S, Yasuda T. Journal of the American Chemical Society, 2020, 142(46), 19468.
12 Yao J F, Li H Z, Wu P, et al. Materials Reports, 2023, 37(14), 228(in Chinese).
姚静锋, 李昊泽, 吴平, 等. 材料导报, 2023, 37(14), 228.
13 Yang T, Liang J, Cui Y, et al. Advanced Optical Materials, 2022, 11(1), 2201191.
14 Li Z, Yang D, Han C, et al. Angewandte Chemie International Edition, 2021, 60(27), 14846.
15 Liu J, Li Z, Hu T, et al. Advanced Optical Materials, 2022, 10(8), 2102558.
16 Zhou L, Wang H, Shi Y Z, et al. Chemical Engineering Journal, 2022, 440, 135775.
17 Zhang M, Zheng C, Wang K, et al. Advanced Functional Materials, 2021, 31(13), 2010100.
18 Im Y, Kim M, Cho Y J, et al. Chemistry of Materials, 2017, 29(5), 1946.
19 He J L, Kong F C, Sun B, et al. Chemical Engineering Journal, 2021, 424, 130470.
20 Wang H, Chen J X, Zhou L, et al. Materials Horizons, 2023, 10(8), 2997.
21 Kumsampao J, Chaiwai C, Chasing P, et al. Chemistry-an Asian Journal, 2020, 15(19), 3029.
22 Zhang T T, Gao H, Yang Y Q, et al. Materials Reports, 2023, 37(16), 223(in Chinese).
张婷婷, 高慧, 杨溢青, 等. 材料导报, 2023, 37(16), 223.
23 Wang H, Chen J, Zhang X, et al. Advanced Optical Materials, 2023, 11(17), 2300368.
24 Li C, Duan R, Liang B, et al. Angewandte Chemie International Edition, 2017, 56(38), 11525.
25 Zhao B, Wang H, Han C, et al. Angewandte Chemie, 2020, 132(43), 19204.
26 Meng G, Dai H, Wang Q, et al. Nature Communications, 2023, 14(1), 2394.
27 Kim H S, Cheon H J, Lee D, et al. Science Advances, 2023, 9(22), eadf1388.
28 Wallace A M, Curiac C. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 265, 107544.
29 Karuthedath S, Gorenflot J, Firdaus Y, et al. Nature Materials, 2020, 20(3), 378.
30 Goushi K, Yoshida K, Sato K, et al. Nature Photonics, 2012, 6(4), 253.
31 Lee H L, Jang H J, Lee J Y. Journal of Materials Chemistry C, 2020, 8(30), 10302.
32 Ali U, Han G, Yi Y. Advanced Theory and Simulations, 2022, 6(2), 2200725.
33 Zhang Y, Du C Z, Li J K, et al. Chinese Journal of Organic Chemistry, 2023, 43(5), 1645.
34 Sereviius T, Skaisgiris R, Fiodorova I, et al. Journal of Materials Che-mistry C, 2021, 9(3), 836.
35 Elgrishi N, Rountree K J, McCarthy B D, et al. Journal of Chemical Education, 2017, 95(2), 197.
36 Huo Y, Lv J, Xie Y, et al. ACS Applied Materials & Interfaces, 2022, 14(51), 57092.
37 Liu T T, Yan Z P, Hu J J, et al. ACS Applied Materials & Interfaces, 2021, 13(47), 56413.
[1] 易源海, 毛茂, 彭嘉欢, 李慧杨. 金(Ⅲ)配合物发光材料的研究进展[J]. 材料导报, 2025, 39(18): 24080056-13.
[2] 章博, 黄飞翔, 谢凤鸣, 杨耀祖, 胡英元, 赵鑫. 绿光到深红光的有效调控:二苯并吡啶并喹喔啉类热激活延迟荧光材料[J]. 材料导报, 2025, 39(1): 23110162-7.
[3] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[4] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[5] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[6] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[7] 张婷婷, 高慧, 杨溢青, 洪兴枝, 任颖, 武海顺. 基于咔唑类给体分子的给-受体型热活化延迟荧光材料研究进展[J]. 材料导报, 2023, 37(16): 22060089-12.
[8] 李晨, 陈叶青, 全志鹏, 吴晓仪, 饶鹏鹏, 倪宗铭, 陈岩, 吴文海, 陈钊. 深蓝光发射碳点的改性及在电致发光器件中的应用[J]. 材料导报, 2023, 37(15): 22020030-6.
[9] 姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
[10] 余俊乐, 郑燕琼, 唐杰, 杨芳, 王超, 魏斌, 李喜峰, 石继锋. 大π共轭分子四苯基二苯并荧蒽及二茚并苝的有机光电器件研究进展[J]. 材料导报, 2020, 34(5): 5148-5157.
[11] 林拱立, 杨志文, 李万万. 磷化铟量子点的合成及其显示器件应用研究进展[J]. 材料导报, 2020, 34(23): 23057-23063.
[12] 周扬州, 钱磊, 章婷. 银纳米线及其透明导电膜的研究进展[J]. 材料导报, 2020, 34(21): 21081-21092.
[13] 赵思宇, 张祥, 卢伶, 张义, 赵青华. 具有聚集诱导发光性质的热活化延迟荧光材料综述[J]. 材料导报, 2020, 34(17): 17155-17167.
[14] 孙佳南,许辉. 热激发延迟荧光分子的受体基团研究进展[J]. 材料导报, 2020, 34(1): 1135-1145.
[15] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[1] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[2] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[3] ZHOU Yingying, XIE Hui, ZHOU Wancheng. Current Research Status of Oxidation Resistance of Carbonyl Iron Powders[J]. Materials Reports, 2018, 32(5): 749 -754 .
[4] ZHANG Libo, WANG Lu, QU Wenwen, XU Shengming, ZHANG Jialin. Research and Development of Petroleum Hydrodesulfurization Catalysts with Al2O3-based Supports[J]. Materials Reports, 2018, 32(5): 772 -779 .
[5] SHI Yu, GAO Haiming, LI Guang, LI Xiang. High Frequency Induction Brazing Process of Copper-Steel and Its Effects on Microstructure and Electrical Conductivity of Weld Joint[J]. Materials Reports, 2018, 32(6): 909 -914 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang. First-principles Calculations of Electronic Structures and Elastic Properties of 14H-LPSO and W Phases in Mg-Zn-Y Alloy[J]. Materials Reports, 2018, 32(6): 1026 -1031 .
[7] . Grain Growth Kinetics of Rolled ZK61 Magnesium Alloy Sheet[J]. Materials Reports, 2017, 31(4): 60 -64 .
[8] REN Jingkun, LIU Weipeng, LI Zhanfeng, SUN Qinjun, WANG Hua, SHI Fang, HAO Yuying. Synthesis of a New Random Terpolymer Donor with an Application to Organic Solar Cells[J]. Materials Reports, 2017, 31(17): 133 -137 .
[9] WANG Yanfeng, ZHAO Xiaohua, LI Gengying. Influence of Dry/Wet State Variation on Piezoresistivity of Multi-walled Carbon Nanotube Reinforced Cement Mortar[J]. Materials Reports, 2017, 31(24): 20 -25 .
[10] HOU Dianxin, LU Yuan, LIU Zhiwei, HU Jie. Temperature Rising in VO2 Thin Films Under Irradiation of Mid-infrared Laser Based on External Heat Source[J]. Materials Reports, 2017, 31(24): 91 -95 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed