Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24030204-7    https://doi.org/10.11896/cldb.24030204
  金属与金属基复合材料 |
Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究
秦传广1, 姜博1,*, 刘乃志2, 王晔1, 胡茂良1, 许红雨1, 吉泽升1,3, 尚金翅4
1 哈尔滨理工大学材料科学与化学工程学院,哈尔滨 150080
2 东北大学材料科学与工程学院,沈阳 110819
3 哈尔滨吉星机械工程有限公司,哈尔滨 150060
4 山东金马汽车装备科技有限公司,山东 临沂 276016
Surface Microstructure Characterization and Corrosion Behavior of Al7Si0.5Mg Aluminum Alloy After Shot Peening Treatment
QIN Chuanguang1, JIANG Bo1,*, LIU Naizhi2, WANG Ye1, HU Maoliang1, XU Hongyu1, JI Zesheng1,3, SHANG Jinchi4
1 School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 Harbin Jixing Mechanical Engineering Co., Ltd., Harbin 150060, China
4 Shandong Jinma Automotive Equipment Technology Co., Ltd., Linyi 276016, Shandong, China
下载:  全 文 ( PDF ) ( 35375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作探究了不同喷丸速度下的Al7Si0.5Mg铝合金耐腐蚀性的影响规律,将喷丸处理后的合金在质量分数3.5%的NaCl溶液中进行电化学测试和浸没腐蚀,采用XRD、SEM、超深显微镜、EBSD等手段对腐蚀后合金的物相组成、表面形貌、变形层及腐蚀产物进行表征。研究结果表明,经喷丸处理后,合金表面出现明显塑性变形层和亚微米级晶粒。喷丸速度为50 m/s时,变形层厚度最大,为20 μm。未处理样品的icorr为64.628 μA/cm2,电容弧半径最小;喷丸速度为50 m/s时icorr为16.094 μA/cm2,电容弧半径最大。在质量分数3.5%的NaCl溶液中浸泡480 h后,喷丸速度为50 m/s时腐蚀坑较浅,表现出较为优异的抗腐蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦传广
姜博
刘乃志
王晔
胡茂良
许红雨
吉泽升
尚金翅
关键词:  Al7Si0.5Mg铝合金  喷丸处理  晶粒细化  腐蚀行为    
Abstract: The effects of different shot peening speeds on corrosion resistance of Al7Si0.5Mg aluminum alloy were investigated in this work. The shot peened alloy specimens were subjected to electrochemical test and immersion corrosion in 3.5%NaCl solution. The phase composition, surface morphology, deformed layer and corrosion products of the corroded alloy were characterized by XRD, SEM, ultra-deep microscope and EBSD. The results show that after shot peening, obvious plastic deformation layer and submicron grain appear on the surface of the alloy. The maximum thickness of the deformation layer is 20 μm when the shot peening speed is 50 m/s. The icorr of the untreated sample was 64.628 μA/cm2, and the radius of the capacitor arc was the minimum. While the icorr of the sample treated with a shot peening speed of 50 m/s is 16.094 μA/cm2 and the radius of the capacitor arc is maximum. Immersion in 3.5%NaCl solution for 480 h, the sample treated with a shot peening speed of 50 m/s shows a relatively shallow corrosion pit, showing relatively excellent corrosion resistance.
Key words:  Al7Si0.5Mg aluminun alloy    shot peening treatment    grain refine    corrosion behavior
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TG66  
基金资助: 黑龙江省科技重大专项(2021ZX05A02);黑龙江省博士后基金(LBH-Z21165);黑龙江省省属本科高校基本科研业务(2021-KYYWF-0737)
通讯作者:  *姜博,哈尔滨理工大学材料科学与化学工程学院教师、硕士研究生导师。主要从事铝、镁合金先进精密成型技术及表面强化技术研究工作。jiangbo@hrbust.edu.cn   
作者简介:  秦传广,现为哈尔滨理工大学材料科学与化学工程学院硕士研究生,在姜博老师和吉泽升教授的指导下进行铝合金精密成形与改性研究工作。
引用本文:    
秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
QIN Chuanguang, JIANG Bo, LIU Naizhi, WANG Ye, HU Maoliang, XU Hongyu, JI Zesheng, SHANG Jinchi. Surface Microstructure Characterization and Corrosion Behavior of Al7Si0.5Mg Aluminum Alloy After Shot Peening Treatment. Materials Reports, 2025, 39(9): 24030204-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030204  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24030204
1 Miller W S, Zhuang L, Bottema J, et al. Materials Science and Enginee-ring: A, 2000, 280 (1), 37.
2 Cardinale M, Macci D, Luciano G, et al. Journal of Alloys and Compounds, 2017, 695, 2180.
3 Ma Y K, Liu Y N, Wang M X. Materials Chemistry and Physics, 2022, 276, 276.
4 Dang B, Li Y B, Liu F, et al. Materials & Design, 2014, 57, 73.
5 Liu Z W, Wang X M, Han Q Y, et al. Powder Technol, 2014, 253, 751.
6 Pourbahari B, Emamy M, Materials & Design, 2016, 94, 111.
7 Bao L, Li K, Zheng J Y, et al. Surface & Coatings Technology, 2022, 440, 440.
8 Rao A, Vasu V, Govindaraju M, et al. The Transactions of Nonferrous Metals Society of China, 2016, 26, 1447.
9 Peral L B, Zafra A, Bagherifard S, et al. Surface and Coatings Technology, 2020, 401, 126285.
10 Zhang Q, Duan B B, Zhang Z Q, et al. Journal of Materials Research and Technology, 2021, 11, 1090.
11 Yang X W, Dong X R, Li W Y, et al. Journal of Materials Research and Technology, 2020, 9(2), 1559.
12 Zhu K Y, Jiang C H, Li Z Q, et al. Materials & Design, 2016, 107, 333.
13 Daniel K, Filip P, Branislav H, et al. Surface and Coatings Technology, 2022, 446, 128773.
14 Kovacı H, Bozkurt Y B, Yetim A F, et al. Surface and Coatings Technology, 2019, 360, 78.
15 Kumar P, Mahobia G S, Mandal S, et al. Corrosion Science, 2021, 189, 109597.
16 Chen B, Huang B, Liu H, et al. Journal of Materials Research, 2014, 29(24), 3002.
17 ebrowski R, Walczak M, Klepka T, et al. Eksploatacja i Niezawodność-Maintenance and Reliability, 2018, 21(1), 46.
18 Huang H, Niu J, Xing X, et al. Coatings, 2022, 12(5), 629.
19 Lv Y T, Zhao B J, Zhang H B, Su C J, et al. Materials Transactions, 2019, 60(8), 1629.
20 Žagar S, Mrvar P, Grum J, et al. Materials, 2022, 15, 3094.
21 Cullity B, Stock S, Elements of X-ray diffraction, Pearson Education Li-mited Third Edition, Published by Pearson, US, 2014, pp. 451.
22 Li Z Y, Yu H Y, Sun D B, Corrosion Science, 2021, 183, 109306.
23 Zhang H, Gu D D, Dai D H, et al. Applied Surface Science, 2020, 509, 145330.
24 Sun Q Q, Han Q Y, Xu R, et al. Corrosion Science, 2018, 130, 218.
25 Lee H, Kim D, Jung J, et al. Corrosion Science, 2009, 51, 2826.
26 Walter R, Kannan M, Materials & Design, 2011, 32, 2350.
27 Hu W N, Peng X Y, Ding Y, et al. Surface and Coatings Technology, 2022, 434, 128208.
28 Pandey V, Singh J K, Chattopadhyay K, et al. Journal of Alloys and Compounds, 2017, 723, 826.
[1] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[2] 朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
[3] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[4] 韩秋丽, 安士忠, 宋克兴, 刘海涛, 周延军, 程楚, 张彦敏. 海洋工程用铜镍合金的腐蚀与防护研究进展[J]. 材料导报, 2024, 38(18): 23020095-8.
[5] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[6] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[7] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[8] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[9] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[10] 董志海, 李逸文, Aleksandr Babkin, 常云龙. 铁素体不锈钢焊缝晶粒细化技术的研究现状[J]. 材料导报, 2022, 36(21): 21040102-10.
[11] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[12] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[13] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[14] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[15] 马琳, 宋雨键, 崔庆贺, 石瑶, 姬书得, 李壮. 搅拌摩擦加工工艺及水冷对A356铸铝合金晶粒细化作用及变形控制[J]. 材料导报, 2021, 35(24): 24122-24127.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed