Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23120036-16    https://doi.org/10.11896/cldb.23120036
  高分子与聚合物基复合材料 |
橡胶的热老化力学性能与本构关系研究进展
谢昭男, 陈军红*, 黄西成, 邱勇
中国工程物理研究院总体工程研究所, 四川 绵阳 621999
A Review on Thermal Aging Mechanical Performance and Constitutive Relationships of Rubber
XIE Zhaonan, CHEN Junhong*, HUANG Xicheng, QIU Yong
Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, Sichuan, China
下载:  全 文 ( PDF ) ( 9358KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 橡胶由于其优良的弹性、强度、绝缘性和韧性,常被制作成隔振、密封和轮胎等多种关键性部件。热老化是影响橡胶力学性能的重要因素,会造成橡胶部件提前失效,降低橡胶部件所在工程系统的整体可靠性。建立精确的橡胶热老化本构模型是有效预测橡胶使用寿命并优化设计其性能的关键。目前,研究学者们开展了大量的橡胶热老化力学性能试验,并提出了多种橡胶热老化本构模型,将这些模型进行归纳总结对全面认识、使用和进一步发展橡胶热老化本构模型十分重要。本文首先介绍了橡胶在热老化下的力学性能变化规律,随后对现有橡胶热老化本构模型进行了分类,分别为唯象经验本构模型、基于化学机制的本构模型、基于化学结构因子的本构模型和基于物理信息的神经网络本构模型,然后对各类模型进行了对比分析,并介绍了模型的应用,最后对橡胶热老化本构模型的未来研究方向进行了讨论。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢昭男
陈军红
黄西成
邱勇
关键词:  橡胶  热老化  力学性能  本构关系    
Abstract: Rubber, owing to its excellent elasticity, strength, insulation, and toughness, is frequently utilized in the manufacturing of critical components such as vibration isolators, seals, and tires. Thermal aging is a crucial factor influencing the mechanical performance of rubber, leading to premature failure of rubber components and consequently diminishing the overall reliability of engineering systems in which these rubber components are employed. The establishment of precise constitutive models for rubber thermal aging is a key factor in effectively predicting the service life of rubber and optimizing the design of its performance. Currently, researchers have conducted a significant number of mechanical property tests on rubber subjected to thermal aging, and various constitutive models for rubber thermal aging have been proposed. The systematic summarization and synthesis of these models are crucial for a comprehensive understanding, application, and further advancement of rubber thermal aging constitutive models. This paper commences with an exposition on the mechanical property variations in rubber under thermal aging. Subsequently, it categorizes existing constitutive models for rubber thermal aging, placing emphasis on the phenomenological empirical constitutive model, the chemically mechanism-based constitutive model, the chemical structure factor-based constitutive model and the physically informed neural network constitutive model, followed by a comparative analysis and introduction of the various models. Finally, future research directions for rubber thermal aging constitutive models are discussed.
Key words:  rubber    thermal aging    mechanical property    constitutive relationship
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  O34  
基金资助: 国家自然科学基金(12172344)
通讯作者:  *陈军红,博士,中国工程物理研究院总体工程研究所副研究员、硕士研究生导师。目前主要从事材料力学性能表征与演化规律、非均质材料损伤与破坏等方面的研究。chenjh@lnm.imech.ac.cn   
作者简介:  谢昭男,中国工程物理研究院总体工程研究所博士研究生,在邱勇研究员和陈军红副研究员的指导下进行研究。目前主要研究领域为橡胶材料的老化力学行为。
引用本文:    
谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
XIE Zhaonan, CHEN Junhong, HUANG Xicheng, QIU Yong. A Review on Thermal Aging Mechanical Performance and Constitutive Relationships of Rubber. Materials Reports, 2025, 39(7): 23120036-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120036  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23120036
1 Zhuo J S, Huang D. Constitutive deduction of engineering materials, Science Press, China, 2009, pp. 1(in Chinese).
卓加寿, 黄丹. 工程材料的本构演绎, 科学出版社, 2009, pp. 1.
2 Yang T Q, Luo W B, Xu P, et al. Viscoelastic theory and applications, Science Press, China, 2004, pp. 292(in Chinese).
杨挺青, 罗文波, 徐平, 等. 黏弹性理论与应用, 科学出版社, 2004, pp. 292.
3 Peng X F, Li L X. Chinese Journal of Theoretical and Applied, 2020, 52(5), 1221(in Chinese).
彭向峰, 李录贤. 力学学报, 2020, 52(5), 1221.
4 Boyce M C, Arruda E M. Rubber Chemistry and Technology, 2000, 73(3), 504.
5 Dal H, Açıkgöz K, Badienia Y. Applied Mechanics Reviews, 2021, 73(2), 20802.
6 Steinmann P, Hossain M, Possart G. Archive of Applied Mechanics, 2012, 82(9), 1183.
7 He H, Zhang Q, Zhang Y R, et al. Nano Materials Science, 2022, 4(2), 64.
8 Beda T. European Polymer Journal, 2014, 50, 97.
9 Hu X L, Liu X, Li M, et al. Engineering Mechanics, 2014, 31(5), 34(in Chinese).
胡小玲, 刘秀, 李明, 等. 工程力学, 2014, 31(5), 34.
10 Treloar L R G. Transactions of the Faraday Society, 1943, 39, 241.
11 Mooney M. Journal of Applied Physics, 1940, 11(9), 582.
12 Ogden R W. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1972, 326(1567), 565.
13 Yeoh O H. Rubber Chemistry and Technology, 1990, 63(5), 792.
14 Li X B, Wei Y T. Engineering Mechanics, 2016, 33(12), 38(in Chinese).
李雪冰, 危银涛. 工程力学, 2016, 33(12), 38.
15 Arruda E M, Boyce M C. Journal of the Mechanics and Physics of Solids, 1993, 41(2), 389.
16 Miehe C. Journal of the Mechanics and Physics of Solids, 2004, 52(11), 2617.
17 Ding J, Suo S F, Zhang Q, et al. China Synthetic Rubber Industry, 2022, 45(6), 523(in Chinese).
丁军, 索双富, 张琦, 等. 合成橡胶工业, 2022, 45(6), 523.
18 Wei Y T, Fang Q H, Jin Z B, et al. Polymer Bulletin, 2014(5), 15(in Chinese).
危银涛, 方庆红, 金状兵, 等. 高分子通报, 2014(5), 15.
19 Bernstein B, Kearsley E A, Zapas L J. Transactions of the Society of Rheology, 1963, 7(1), 391.
20 Bergstrom J. Journal of the Mechanics and Physics of Solids, 1998, 46(5), 931.
21 Lubliner J. Mechanics Research Communications, 1985, 12(2), 93.
22 Christensen R M. Journal of Applied Mechanics, 1980, 47(4), 762.
23 Dargazany R, Itskov M. International Journal of Solids and Structures, 2009, 46(16), 2967.
24 Chagnon G, Verron E, Marckmann G, et al. International Journal of Solids and Structures, 2006, 43(22-23), 6817.
25 Dorfmann A, Ogden R W. International Journal of Solids and Structures, 2004, 41(7), 1855.
26 Zhao Q L, Li X G, Gao J, et al. Insulating Materials, 2010, 43(1), 37(in Chinese).
赵泉林, 李晓刚, 高瑾, 等. 绝缘材料, 2010, 43(1), 37.
27 Bensalem K, Eesaee M, Hassanipour M, et al. Polymer Degradation and Stability, 2024, 220, 110644.
28 Ha-Anh T, Vu-Khanh T. Polymer Testing, 2005, 24(6), 775.
29 Korba A G, Kumar A, Sun G, et al. Journal of Engineering Materials and Technology, 2018, 140(1), 11006.
30 Liu J, Li X B, Xu L K, et al. Polymer Testing, 2016, 54, 59.
31 Rezig N, Bellahcene T, Aberkane M, et al. Journal of Polymer Research, 2020, 27(11), 339.
32 Zhi J Y, Wang Q L, Zhang M J, et al. Polymer, 2019, 171, 15.
33 Hamed G R, Zhao J. Rubber Chemistry and Technology, 1999, 72(4), 721.
34 Li Y, Liu X, Hu X L, et al. Polymers for Advanced Technologies, 2015, 26(11), 1331.
35 Li Y. Changes in tensile mechanical properties of carbon black filled rubbers by thermal aging. Master's Thesis, Xiangtan University, China, 2015 (in Chinese).
李彦. 热氧老化对炭黑填充橡胶拉伸力学性能的影响. 硕士学位论文, 湘潭大学, 2015.
36 Tobolsky A V, Prettyman I B, Dillon J H. Journal of Applied Physics, 1944, 15(4), 380.
37 Johlitz M, Diercks N, Lion A. International Journal of Plasticity, 2014, 63, 138.
38 Chaabane M, Ding N, Zaïri F. International Journal of Non-Linear Mechanics, 2021, 136, 103783.
39 Yin B Y, Wen H B, Luo W B. npj Materials Degradation, 2022, 6(1), 94.
40 Hou F Y, Song Y H, Zheng Q. Polymer, 2020, 195, 122432.
41 Mohammadi H, Morovati V, Korayem A, et al. Polymer Degradation and Stability, 2021, 191, 109663.
42 Mohammadi H, Morovati V, Poshtan E, et al. Polymer Degradation and Stability, 2020, 175, 109108.
43 Bouaziz R, Ahose K D, Lejeunes S, et al. International Journal of Solids and Structures, 2019, 169, 122.
44 Kittur M I, Andriyana A, Ang B C, et al. Polymer Degradation and Stability, 2022, 204, 110120.
45 Zaghdoudi M, Kömmling A, Jaunich M, et al. Polymer Testing, 2023, 121, 107987.
46 Liu Y K, Zhang Q S, Liu R T, et al. Construction and Building Materials, 2022, 320, 126298.
47 Yang X H, Xu J S, Zhou C S, et al. Journal of Beijing Institute of Technology, 2017, 37(2), 126(in Chinese).
杨晓红, 许进升, 周长省, 等. 北京理工大学学报, 2017, 37(2), 126.
48 Li C J, Ding Y Q, Yang Z, et al. Polymer Testing, 2020, 84, 106366.
49 Ha-Anh T. Influence of thermo-oxidative aging on the mechanical behaviors of polychloroprene. Ph. D. Thesis. Université de Sherbrooke, Canada, 2007.
50 Xie Z M, Wang Y S, Wan Z M, et al. Journal of Harbin Institute of Technology, 2008(9), 1404(in Chinese).
谢志民, 王友善, 万志敏, 等. 哈尔滨工业大学学报, 2008(9), 1404.
51 Korba A G, Kumar A, Barkey M E. In: Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference. College Station, TX, USA, 2018.
52 Korba A G, Barkey M E. In:Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference. College Station, TX, USA, 2017.
53 Korba A G. A model of thermal aging of hyper-elastic materials with an application to natural rubber. Ph. D. Thesis. The University of Alabama, USA, 2017.
54 Korba A G, Kumar A, Barkey M. Journal of Elastomers and Plastics, 2020, 52(8), 677.
55 Lou W T, Xie C Y, Guan X F. Polymer Degradation and Stability, 2022, 198, 109873.
56 A J L, Xie C Y, Lou W T, et al. Ordnance Material Science and Engineering, 2023, 46(4), 15(in Chinese).
阿锦林, 谢朝阳, 娄伟涛, 等. 兵器材料科学与工程, 2023, 46(4), 15.
57 Li Y M, Ma Y H, Luo J R, et al. Journal of Vibration and Shock, 2016, 35(16), 164(in Chinese).
李艳敏, 马玉宏, 罗佳润, 等. 振动与冲击, 2016, 35(16), 164.
58 Ma Y H, Li Y M, Zhao G F, et al. Earthquake Engineering and Engineering Dynamics, 2017, 37(5), 38(in Chinese).
马玉宏, 李艳敏, 赵桂峰, 等. 地震工程与工程振动, 2017, 37(5), 38.
59 Li Q Q, Xu Z D, Dong Y R, et al. Journal of Engineering Mechanics, 2023, 149(1), 4022099.
60 Andrews R D, Tobolsky A V, Hanson E E. Journal of Applied Physics, 1946, 17(5), 352.
61 Dargazany R, Khiêm V N, Navrath U, et al. Journal of Mechanics of Materials and Structures, 2012, 7(8-9), 861.
62 Mohammadi H, Dargazany R. International Journal of Plasticity, 2019, 118, 1.
63 Bahrololoumi A, Shaafaey M, Ayoub G, et al. International Journal of Solids and Structures, 2022, 252, 111800.
64 Bahrololoumi A, Ghaderi A, Shaafaey M, et al. In: Proceedings of the ASME 2021 International Mechanical Engineering Congress and Exposition. Virtual, Online, 2021.
65 Bahrololoumi A, Shaafaey M, Dargazany R. In: Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Columbus, Ohio, 2022.
66 Mohammadi H, Bahrololoumi A, Yang C, et al. In: Proceedings of the 11th European Conference on Constitutive Models for Rubber. Nantes, France, 2019.
67 Johlitz M. The Journal of Adhesion, 2012, 88(7), 620.
68 Johlitz M, Lion A. Continuum Mechanics and Thermodynamics, 2013, 25(5), 605.
69 Musil B, Böhning M, Johlitz M, et al. Continuum Mechanics and Thermodynamics, 2020, 32(1), 127.
70 Musil B, Johlitz M, Lion A. Continuum Mechanics and Thermodynamics, 2020, 32(2), 369.
71 Dippel B, Johlitz M, Lion A. Continuum Mechanics and Thermodynamics, 2014, 26(3), 247.
72 Lion A, Johlitz M. International Journal of Solids and Structures, 2012, 49(10), 1227.
73 Johlitz M. Zum alterungsverhalten von polymeren: experimentell gestützte, thermo-chemomechanische modellbildung und numerische simulation. Ph. D. Thesis, Universität der Bundeswehr München, Germany, 2015.
74 Steinke L, Spreckels J, Flamm M, et al. Plastics, Rubber and Composites, 2013, 40(4), 175.
75 Simo J C, Taylor R L. Computer Methods in Applied Mechanics and Engineering, 1982, 35(1), 107.
76 Hossain M, Possart G, Steinmann P. Computational Mechanics, 2009, 43(6), 769.
77 Hossain M, Possart G, Steinmann P. Computational Mechanics, 2009, 44(5), 621.
78 Septanika E G, Ernst L J. Mechanics of Materials, 1998, 30(4), 253.
79 Septanika E G, Ernst L J. Mechanics of Materials, 1998, 30(4), 265.
80 Budzien J, Rottach D R, Gurro J, et al. Macromolecules, 2008, 41(24), 9896.
81 Rubinstein M, Panyukov S. Macromolecules, 2002, 35(17), 6670.
82 Fricker H S. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1973, 335(1602), 267.
83 Rajagopal K R, Wineman A S. International Journal of Plasticity, 1992, 8(4), 385.
84 Wineman A, Min J. International Journal of Non-Linear Mechanics, 2003, 38(7), 969.
85 Shaw J A, Jones A S, Wineman A S. Journal of the Mechanics and Physics of Solids, 2005, 53(12), 2758.
86 Wineman A, Shaw J. Mathematics and Mechanics of Solids, 2019, 24(10), 3103.
87 Wineman A. Journal of Elasticity, 2023, 154(1-4), 199.
88 Jones A S. An experimental study of the thermo-mechanical response of elastomers undergoing scission and crosslinking at high temperatures. Ph. D. Thesis. The University of Michigan, USA, 2003.
89 Beurle D. A micro-mechanically motivated model for the oxidative ageing of elastomers. Ph. D. Thesis, Gottfried Wilhelm Leibniz Universität Hannover, Germany, 2020.
90 Beurle D, André M, Nackenhorst U, et al. In: Virtual Design and Validation, Wriggers P, Allix O, Weißenfels C, ed, Springer Cham, 2020, pp. 271.
91 Beurle D, André M, Nackenhorst U, et al. In: Proceedings of the 11th European Conference on Constitutive Models for Rubber. Nantes, France, 2019.
92 Wineman A, Jones A, Shaw J. Tire Science and Technology, 2003, 31(2), 68.
93 Naumann C. Chemisch-mechanisch gekoppelte Modellierung und Simulation oxidativer Alterungsvorgänge in Gummibauteilen. Ph. D. Thesis, Technische Universität Chemnitz, Germany, 2017.
94 Heczko J, Kottner R, Kossa A. European Journal of Mechanics-A/Solids, 2021, 89, 104320.
95 Naumann C, Ihlemann J. In: Proceedings of the 9th European Conference on Constitutive Models for Rubbers. Prague, Czech republic, 2015.
96 Heczko J, Kottner R. In: Proceedings of the 11th European Conference on Constitutive Models for Rubber. Nantes, France, 2019.
97 Schlomka C, Ihlemann J, Naumann C. In: Proceedings of the 10th European Conference on Constitutive Models for Rubber. Munich, Germany, 2017.
98 Naumann C, Ihlemann J. In: Proceedings of the 8th European Conference on Constitutive Models for Rubbers. San Sebastián, Spain, 2013.
99 Xiong C X. China Synthetic Rubber Industry, 1992(3), 180(in Chinese).
熊传溪. 合成橡胶工业, 1992(3), 180.
100 Houwink R. Journal für Praktische Chemie, 1940, 157(1-3), 15.
101 Zheng W, Zhao X Y, Li Q G, et al. Journal of Applied Polymer Science, 2017, 134(12), 44630.
102 Li Q Q, Xu Z D, Tong Q S, et al. Journal of Applied Polymer Science, 2023, 140(45), 54667.
103 Wang J, Jia H, Ding L, et al. Polymer Composites, 2015, 36(9), 1721.
104 Shakiba M, Najmeddine A. Journal of Mechanics of Materials and Structures, 2022, 17(3), 229.
105 Najmeddine A, Shakiba M. International Journal of Mechanical Sciences, 2024, 262, 108721.
106 Zhi J Y. Experiment and multi-scale simulation of rubber viscoelastic hysteresis heat generation and thermo-oxidative aging. Ph. D. Thesis, Shandong University, China, 2019 (in Chinese).
智杰颖. 橡胶黏弹性滞后生热及热氧老化的实验及多尺度模拟. 博士学位论文, 山东大学, 2019.
107 N'Guyen T A, Lejeunes S, Eyheramendy D, et al. Mechanics of Materials, 2016, 95, 158.
108 Lejeunes S, Eyheramendy D, Boukamel A, et al. Mechanics of Time-Dependent Materials, 2018, 22(1), 51.
109 Ahose K D, Lejeunes S, Eyheramendy D, et al. In: Proceedings of the 11th European Conference on Constitutive Models for Rubber. Nantes, France, 2019.
110 Delattre A, Lejeunes S, Lacroix F, et al. International Journal of Solids and Structures, 2016, 90, 178.
111 Delattre A, Lejeunes S, Méo S, et al. Rubber Chemistry and Technology, 2014, 87(3), 557.
112 Lion A, Dippel B, Liebl C. International Journal of Solids and Structures, 2014, 51(3-4), 729.
113 Colin X, Hassine M B, Nait-Abelaziz M. Rubber Chemistry and Technology, 2019, 92(4), 722.
114 Kalina K A, Linden L, Brummund J, et al. Computational Mechanics, 2022, 69(1), 213.
115 Ghaderi A, Morovati V, Dargazany R. Polymers, 2020, 12(11), 2628.
116 Ghaderi A, Ayoub G, Dargazany R. Journal of Materials Science, 2023, 59, 5066.
117 Ghaderi A, Morovati V, Chen Y, et al. International Journal of Mechanical Sciences, 2022, 223, 107236.
118 Ghaderi A, Chen Y, Dargazany R. In: Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition. Columbus, Ohio, 2022.
119 Li Q Q, Xu Z D, Dong Y R, et al. Construction and Building Materials, 2024, 414, 134920.
120 Achenbach M. Computational Materials Science, 2000, 19(1-4), 213.
121 Duarte J, Achenbach M. Kautschuk Gummi Kunststoffe, 2007, 60(4), 172.
122 Zhi J Y, Wang Q L, Zhang M J, et al. Journal of Applied Polymer Science, 2019, 136(18), 47452.
123 Steinke L, Weltin U, Flamm M, et al. In: Proceedings of the 7th European Conference on Constitutive Models for rubber. Dublin, Ireland, 2011.
[1] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[2] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[3] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[4] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[5] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[6] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[7] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[8] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[9] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[10] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[11] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[12] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[13] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[14] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[15] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed