Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23110143-9    https://doi.org/10.11896/cldb.23110143
  无机非金属及其复合材料 |
寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测
段明翰1, 覃源1,*, 李阳1, 耿凯强2
1 西安理工大学旱区水工程生态环境全国重点实验室,西安 710048
2 石河子大学水利建筑工程学院,新疆 石河子 832000
Mechanical Properties of Polyacrylic Fiber Concrete in Cold Areas and Prediction by Multilayer Perceptron Neural Network
DUAN Minghan1, QIN Yuan1,*, LI Yang1, GENG Kaiqiang2
1 State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an 710048, China
2 School of Water Conservancy and Construction Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
下载:  全 文 ( PDF ) ( 7778KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为延长寒冷地区混凝土材料的服役寿命,降低水利工程建设和维护过程中的资源损耗,通过添加腈纶纤维来制备腈纶纤维增强混凝土(PANFRC)。本工作主要探讨了寒冷气候条件下,养护方式、龄期及纤维掺量对PANFRC的动弹性模量、表面回弹硬度、抗压强度及劈裂抗拉强度等力学性能的影响。结果表明:冬季室外养护容易发生冻害,28 d龄期难以达到抗压强度设计值,纤维掺量在1.5~1.8 kg/m3时对混凝土有增强效果,且抗拉性能提升效果最优,有望改善其抗裂能力。同时建立了适用于PANFRC的力学指标转换数学模型。此外,基于试验数据构建了关于PANFRC压、拉性能的神经网络预测模型(RBFN及MLPN),模型精度评估结果表明MLPN优于RBFN,测试集中两个模型的抗压强度和劈裂抗拉强度预测绝对误差分别可控制在3 MPa及0.17 MPa以内,相对误差分别可控制在9%及6%以内,相关系数R2均在0.9以上。研究结果可为PANFRC进一步应用于寒冷地区渠道衬砌及其他水利设施建设提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段明翰
覃源
李阳
耿凯强
关键词:  腈轮纤维混凝土  力学性能  强度预测  神经网络  渠道衬砌    
Abstract: To extend the service life of concrete materials in cold regions and minimize resource expenditure during the construction and maintenance of water conservancy projects, polyacrylonitrile fiber reinforced concrete (PANFRC) has been developed through the incorporation of polyacrylonitrile fibers. This work investigated the influence of curing methods, curing ages, and fiber content on dynamic elastic modulus, surface rebound hardness, compressive strength, and splitting strength of PANFRC under cold climate conditions. The findings indicate that concrete cured in outdoor in cold region winter is susceptible to frost damage to hardly achieve the target compressive strength at 28 days. A fiber content of 1.5—1.8 kg/m3 can enhance the concrete's properties, especially for tensile performance, and improve its crack resistance. Moreover, based on existing empirical correlations, a mathematical model for converting mechanical indices suitable for PANFRC had been established. Furthermore, based on experimental data, neural network prediction models (RBFN and MLPN) for the compressive and tensile properties of PANFRC had been developed. Model accuracy evaluations reveal that the MLPN model outperforms the RBFN model here. The absolute errors for compressive strength and splitting tensile strength predictions in the test set are confined to within 3 MPa and 0.17 MPa, respectively, with relative errors kept below 9% and 6%, respectively, and the correlation coefficient (R2) exceeding 0.9. This research provides a theoretical foundation for the broader application of PANFRC in canal lining and other water conservancy infrastructure construction in cold regions.
Key words:  acrylic fiber concrete    mechanical property    strength prediction    neural network    canal lining
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TV43  
基金资助: 国家自然科学基金面上项目(52279139)
通讯作者:  *覃源,西安理工大学水利水电学院教授、博士研究生导师。目前主要从事寒旱区水工混凝土耐久性细观损伤机理及补强技术等方面的研究工作。qinyuan@xaut.edu.cn   
作者简介:  段明翰,于西安理工大学水利水电学院攻读硕士、博士学位,现在覃源教授的指导下,主要从事寒旱区水工纤维混凝土耐久性及宏/细观损伤机理研究。
引用本文:    
段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
DUAN Minghan, QIN Yuan, LI Yang, GENG Kaiqiang. Mechanical Properties of Polyacrylic Fiber Concrete in Cold Areas and Prediction by Multilayer Perceptron Neural Network. Materials Reports, 2025, 39(6): 23110143-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110143  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23110143
1 Tan Y Q, Xu H N, Zhou C X, et al. Journal of Harbin Institute of Technology, 2011, 43 (8), 98(in Chinese).
谭忆秋, 徐慧宁, 周纯秀, 等. 哈尔滨工业大学学报, 2011, 43(8), 98.
2 Shen X D, Zhang Y P, Wang L P. Chinese Journal of Agricultural Engineering, 2012, 28 (16), 80(in Chinese).
申向东, 张玉佩, 王丽萍. 农业工程学报, 2012, 28(16), 80.
3 Li X F, Fu Z. Journal of Agricultural Engineering, 2015, 31 (11), 165(in Chinese).
李雪峰, 付智. 农业工程学报, 2015, 31(11), 165.
4 Li X F, Wang H L, Diao B. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (8), 117(in Chinese).
李雪峰, 王华牢, 刁波. 农业工程学报, 2018, 34 (8), 117.
5 Chen Y Q. Engineering Machinery and Maintenance, 2022 (2), 60(in Chinese).
陈雅琼. 工程机械与维修, 2022(2), 60.
6 Ma H X, An R. Advanced Materials Research, 2011, 374-377, 1467.
7 Wei Y J, Wang Q, Jiang H. Sichuan Hydropower, 2019, 38 (2), 45(in Chinese).
魏勇军, 王强, 蒋怀. 四川水力发电, 2019, 38(2), 45.
8 Fan S. Materials Research, 2015, 18, 1298.
9 Zeng Z H, Li C X, Ke L, et al. Journal of Railway Science and Engineering, 2020, 17(10), 2549(in Chinese).
曾振海, 李传习, 柯璐, 等. 铁道科学与工程学报, 2020, 17(10), 2549.
10 Zhang Y, Li N, Zhang H B, et al. Journal of Hydropower, 2014, 33 (2), 221(in Chinese).
张岩, 李宁, 张浩博, 等. 水力发电学报, 2014, 33(2), 221.
11 Xu Q, Chen H, Prozzi J A. Construction and Building Materials, 2010, 24(10), 2003.
12 Slebi-Acevedo C J, Lastra-González P, Castro-Fresno D, et al. Construction and Building Materials, 2022, 317, 125829.
13 Xie J D, W L, Liu Z H, et al. Journal of Guizhou University (Natural Science Edition), 2022, 39 (4), 105(in Chinese).
谢金东, 武亮, 刘志洪, 等. 贵州大学学报(自然科学版), 2022, 39(4), 105.
14 Gan B L, Feng X H, Bi J L, et al. Concrete and Cement Products, 2022 (2), 1(in Chinese).
甘彬霖, 冯旭海, 毕经龙, 等. 混凝土与水泥制品, 2022(2), 1.
15 Zhang Q, Li Y Z, Liu B H, et al. Journal of Agricultural Engineering, 2017, 33 (2), 259 (in Chinese ).
张强, 李耀庄, 刘保华, 等. 农业工程学报, 2017, 33(2), 259.
16 Mi K H, Deng S M. In:Intelligent Construction and High-quality Deve-lopment of Reservoir Dams. Guiyang,2023, pp.892(in Chinese).
糜凯华, 邓水明. 水库大坝智慧化建设与高质量发展. 贵阳, 2023, pp.892.
17 Zheng J C, Zhu L, P G, et al. Journal of Wuhan University (Engineering and Science Edition), 2013, 46 (2), 188(in Chinese).
郑金城, 祝磊, 彭刚, 等. 武汉大学学报(工学版), 2013, 46(2), 188.
18 Wang J, Xu B, Chen H B. Chinese Journal of Applied Mechanics, 2019, 36 (3), 538(in Chinese).
王江, 许斌, 陈洪兵. 应用力学学报, 2019, 36(3), 538.
19 Qin Y, Lyu G, Guan K, et al. Acta Silica Sinica, DOI:10. 14062/j. issn. 0454-5648. 20220694(in Chinese).
覃源, 吕杲, 关科, 等. 硅酸盐学报, DOI:10. 14062/j. issn. 0454-5648. 20220694.
20 Asteris Panagiotis G, Skentou Athanasia D, Bardhan Abidhan, et al. Cement and Concrete Research, 2021, 145, 106449.
21 Li D H, Gao Q, Xia X, et al. Materials Guide, 2019, 33 (S2), 317(in Chinese).
李地红, 高群, 夏娴, 等. 材料导报, 2019, 33(S2), 317.
22 Ji T, Lin T W, Lin X J. Journal of Building Materials, 2005(6), 677(in Chinese).
季韬, 林挺伟, 林旭健. 建筑材料学报, 2005(6), 677.
23 Chen Q, Ma R, Jiang Z W, et al. Journal of Building Materials, 2020, 23 (1), 176(in Chinese).
陈庆, 马瑞, 蒋正武, 等. 建筑材料学报, 2020, 23(1), 176.
24 Chen H G, Long W Y, Li X, et al. Building Structures,2021, 51 (S2), 1041(in Chinese).
陈洪根, 龙蔚莹, 李昕, 等. 建筑结构, 2021, 51(S2), 1041.
25 Tam V W Y, Butera A, Le K N, et al. Construction and Building Materials, 2022, 324.
26 Xu J H, Chen S L, Dong G N, et al. Journal of Shenyang University of Technology, 2022, 44 (5), 590(in Chinese).
徐金花, 陈四利, 董冠男, 等. 沈阳工业大学学报, 2022, 44(5), 590.
27 Zhu G J, Feng J J, Guo P C, et al. Journal of Agricultural Engineering,2014, 30 (8), 65(in Chinese).
朱国俊, 冯建军, 郭鹏程, 等. 农业工程学报, 2014, 30(8), 65.
28 Hu Y Z, Li Y. Journal of Agricultural Engineering, 2016, 32 (1), 22(in Chinese).
胡燕祝, 李雷远. 农业工程学报, 2016, 32(1), 22.
29 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical specification of application of fiber reinforced concrete, Guangming Daily Press, China,2010(in Chinese).
中华人民共和国住房和城乡建设部, 纤维混凝土应用技术规程 (GJ/T 221-2010), 光明日报出版社, 2010.
30 China Engineering Construction Standardization Association. Technical specification for fiber reinforced concrete structures. China Planning Press, China, 2004(in Chinese).
中国工程建设标准化协会. 纤维混凝土结构技术规程 (CECS 38-2004), 中国计划出版社, 2004.
31 National Energy Administration. Technical specification for durability of hydraulic concrete, China Electric Power Press,China,2010(in Chinese).
国家能源局. 水工混凝土耐久性技术规范(DL/T 5241-2010), 中国电力出版社, 2010.
32 Li Y, Liu J W, An X L, et al. Advanced Materials Research, 2014, 3, 1065.
33 Chen J, Li Y, Wen L, et al. KSCE Journal of Civil Engineering, 2019, 24, 612.
34 Diambra A, Festugato L, Ibraim E, et al. Soils and Foundations, 2018, 58(1), 199.
35 Yan C W, Jia J Q, Zhang J, et al. Journal of Dalian University of Technology, 2012, 52(3), 233(in Chinese).
闫长旺, 贾金青, 张菊, 等. 大连理工大学学报, 2012, 52(3), 233.
36 Xia G Z, Xia D T, Xu L H, et al. Journal of Chongqing Jianzhu University,2007, 29(5), 103(in Chinese).
夏广政, 夏冬桃, 徐礼华, 等. 重庆建筑大学学报, 2007, 29(5), 103.
37 Qin Y, Li Y, Zhang X W, et al. Construction and Building Materials, 2022, 347, 128508.
38 Breysse D. Construction and Building Materials, 2012, 33, 139.
39 Rui Vasco Silva, Jorge de Brito, Ravindra Kumar Dhir. Journal of Cleaner Production, 2016, 112, 2171.
40 Lin Hangwei, Takasu Koji, Suyama Hiroki, et al. Construction and Building Materials, 2022, 347, 128585.
41 Krystian Jurowski, Stefania Grzeszczyk. Materials, 2018, 11(4), 477.
42 Ma Z Y, Lu X P. Geospatial Information, 2022, 20(6), 74(in Chinese).
马泽宇, 卢小平. 地理空间信息, 2022, 20(6), 74.
43 Xue W. SPSS modeler data mining method and application, Electronic Industry Press, China, 2020, pp. 200(in Chinese).
薛薇. SPSS Modeler数据挖掘方法及应用, 电子工业出版社, 2020, pp. 200.
44 Li K Q, Hu Y F, Han B, et al. Journal of Central South University (Natural Science Edition), 2021, 52 (5), 1581(in Chinese).
李克庆, 胡亚飞, 韩斌, 等. 中南大学学报(自然科学版), 2021, 52(5), 1581.
45 Liu Z Z, Pan W, Wu A X, et al. Journal of Central South University (Natural Science Edition), 2020, 51(4), 863(in Chinese).
刘正洲, 潘伟, 吴爱祥, 等. 中南大学学报(自然科学版), 2020, 51(4), 863.
46 Marai M. Alshihri, Ahmed M. Azmy, Mousa S. et al. Construction and Building Materials, 2008, 23, 6.
47 Ramkumar K B, Kannan Rajkumar P R, Shaik Noor Ahmmad, et al. Construction and Building Materials, 2020, 261, 120215.
48 Ly Hai-Bang, Nguyen Thuy-Anh, Thi Mai Hai-Van, et al. Construction and Building Materials, 2021, 301, 124081.
49 Lu Minh Le, Hai-Bang Ly, Binh Thai Pham, et al. Materials, 2019, 12(10), 1670.
50 Liu J, Zhao Y, Wang F C, et al. Industrial Buildings, 2022, 52(9), 147(in Chinese).
刘坚, 招渝, 王飞程, 等. 工业建筑, 2022, 52(9), 147.
[1] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[2] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[3] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[4] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[5] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[6] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[7] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[8] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[9] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[10] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[11] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[12] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[13] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[14] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[15] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed