Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23100111-7    https://doi.org/10.11896/cldb.23100111
  无机非金属及其复合材料 |
硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响
宋国锋1, 张师伟2, 刘俊3, 刘建坤1, 梁思明1,*
1 中山大学土木工程学院,广州 510275
2 中国国家铁路集团有限公司,北京 100080
3 中铁建工集团有限公司,广州 511400
Effect of Sulfoaluminate Expansive Additives on Early-age Creep and Internal Relative Humidity of Cement Mortar
SONG Guofeng1, ZHANG Shiwei2, LIU Jun3, LIU Jiankun1, LIANG Siming1,*
1 School of Civil Engineering, Sun Yat-sen University, Guangzhou 510275, China
2 China State Railway Group Co., Ltd., Beijing 100080, China
3 China Railway Construction Engineering Group, Guangzhou 511400, China
下载:  全 文 ( PDF ) ( 10294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 掺用硫铝酸盐膨胀剂(SEA)可以减小水泥基材料的收缩,但SEA对水泥基材料徐变和内部湿度的影响仍不明确,不利于结构早期开裂的准确评估。本工作研究了SEA掺量为0%、4%和8%的水泥砂浆的早期徐变、内部湿度和孔隙特征,并基于随机分布孔隙有限元模型分析了孔隙率和孔径对徐变的影响。结果表明,水泥砂浆的徐变随着SEA掺量的增大而减小,且加载龄期越晚,SEA对徐变的抑制效应越显著。密闭状态下水泥砂浆的内部湿度随着SEA掺量的增大而降低。SEA会减小水泥砂浆的孔隙率并细化孔径。水泥砂浆的孔隙率每增加1%,其徐变约增大4%;孔径的细化对水泥砂浆徐变的抑制效应不明显。SEA对水泥砂浆徐变的降低机理与水化硅酸钙含量的减少、内部湿度的下降、孔隙率的降低以及孔径的细化等因素有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋国锋
张师伟
刘俊
刘建坤
梁思明
关键词:  徐变  内部湿度  硫铝酸盐膨胀剂  水泥砂浆  孔隙结构  随机分布孔隙有限元模型    
Abstract: The addition of sulfoaluminate expansive additives (SEA) can reduce the shrinkage of cementitious materials, however, the effect of SEA on materials’ creep and internal relative humidity is still unclear, which is not conducive to the accurate crack assessment of concrete structures. This work conducted an experimental study on the early-age creep, internal humidity, and pore information of cement mortars with 0%, 4%, and 8% SEA, and a simulative analysis about the effects of porosity and pore size on the creep property based on a finite element model with randomly-distributed pores. The results show that the mortar creep changes inversely with the increasing SEA content, and the reduction effect of SEA on the creep property of mortar loaded at a later age is more significant. There can also be found an inverse variation of internal relative humidity with increasing SEA content. SEA addition can reduce the porosity of cement mortar and refine the pore size. A 1% increment in mortar porosity results in 4% rise of creep, while the refinement of pore size has a limited effect on reduction of creep. The effect of SEA addition on mortar’s creep reduction can be attributed to the decreases in calcium silicate hydrate, internal relative humidity, and porosity, as well as the refinement of pore size.
Key words:  creep    internal humidity    sulfoaluminate expansive additive    cement mortar    pore structure    finite element model with randomly distributed pores
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52108263);广东省基础与应用基础研究基金(2023A1515011154)
通讯作者:  *梁思明,中山大学土木工程学院助理教授、硕士研究生导师。2013年7月、2018年7月于清华大学分别获得工学学士学位和工学博士学位。目前主要从事水泥基材料徐变力学性能多尺度测试与模拟、智能水泥基材料、基础设施智能监测等方面的研究工作。liangsm8@mail.sysu.edu.cn   
作者简介:  宋国锋,2022年7月于东北农业大学获得工学学士学位。现为中山大学土木工程学院硕士研究生。目前主要研究方向为水泥基材料的徐变性能。
引用本文:    
宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
SONG Guofeng, ZHANG Shiwei, LIU Jun, LIU Jiankun, LIANG Siming. Effect of Sulfoaluminate Expansive Additives on Early-age Creep and Internal Relative Humidity of Cement Mortar. Materials Reports, 2025, 39(4): 23100111-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100111  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23100111
1 Du H,Yan H,Song B C,et al. Journal of Municipal Technology,2023,41(2),31 (in Chinese).
杜鹤,严晗,宋宝仓,等. 市政技术,2023,41(2),31.
2 Wei Y,Liang S,Guo W,et al. Cement and Concrete Composites,2017,83,45.
3 Xin J, Jiang X, Chen Z, et al. Structures, 2022, 45, 1189.
4 Weng J R, Liao W C. Construction and Building Materials, 2021, 308, 125045.
5 Sun H Y. Journal of Municipal Technology, 2023, 41(1), 31 (in Chinese).
孙红艳. 市政技术, 2023, 41(1), 31.
6 Yang L, Shi C, Liu J, et al. Construction and Building Materials, 2021, 267, 121017.
7 Zheng X, Gao S, Liu K, et al. Journal of Building Engineering, 2022, 54, 104669.
8 Yoo D Y, Banthia N, Yoon Y S. Cement and Concrete Composites, 2015, 64, 27.
9 Zhan P, He Z. Construction and Building Materials, 2019, 201, 676.
10 Li H, Wang Y, Wang Y J, et al. Journal of Building Materials, 2022, 25(3), 256 (in Chinese).
李华, 汪洋, 王育江, 等. 建筑材料学报, 2022, 25(3), 256.
11 Liang S, Liu Y, Song G, et al. Case Studies in Construction Materials, 2023, 19, e02226.
12 Fan L Z. Research and application on gentle volume expansion concrete with dual source of calcium and magnesium. Master’s Thesis, Northwest A&F University, China, 2016 (in Chinese).
范灵芝. 钙镁双源微膨胀混凝土耐久性研究与应用. 硕士学位论文, 西北农林科技大学, 2016.
13 GB/T 17671-2021. Test method of cement mortar strength (ISO method), China Standards Press, China, 2021 (in Chinese).
GB/T 17671-2021. 水泥胶砂强度检测方法(ISO法), 中国标准出版社, 2021.
14 Liang S, Du H, Ke Z, et al. Construction and Building Materials, 2022, 358, 129442.
15 Bauchau O A, Craig J I. Euler-Bernoulli beam theory//Structural analysis, Springer Netherlands, Germany, 2009, pp. 173.
16 Liang S, Wei Y. Cement and Concrete Composites, 2019, 97, 288.
17 Hedegaard B D, Clement T J, Hubler M H. ACI Materials Journal, 2023, 120(3), 103.
18 Zhang Z, Zhu Y, Zhu H, et al. Cement and Concrete Composites, 2019, 96, 194.
19 Liang S M. Multiscale investigation of creep and mechanical properties of cement based materials. Ph. D. Thesis, Tsinghua University, China, 2018 (in Chinese).
梁思明. 水泥基材料徐变与力学性能多尺度研究. 博士学位论文, 清华大学, 2018.
20 Liang S, Wei Y. Cement and Concrete Composites, 2019, 104, 103421.
21 Guo J, Zhang S, Guo T, et al. Construction and Building Materials, 2020, 263, 120245.
22 Yu P, Duan Y H, Chen E, et al. Construction and Building Materials, 2018, 188, 1193.
23 Suwanmaneechot P, Aili A, Maruyama I. Cement and Concrete Research, 2020, 132, 106036.
24 Yu J, Qian J, Tang J, et al. Construction and Building Materials, 2019, 207, 249.
25 Wei Y, Liang S, Gao X. In:6th Biot Conference on Poromechanics. Paris, 2017, pp. 1099.
[1] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[4] 陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
[5] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[6] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[7] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[8] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[9] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[10] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[11] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[12] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[13] 舒修远, 乔宏霞, 曹锋, 崔丽君. 青稞秸秆灰对氯氧镁水泥砂浆粘结强度的影响[J]. 材料导报, 2023, 37(23): 22040311-6.
[14] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[15] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed