Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120101-8    https://doi.org/10.11896/cldb.24120101
  无机非金属及其复合材料 |
压实雪抗压强度变化规律及烧结机制试验研究
霍海峰1,2, 贾汶韬1, 孙涛3,*, 成鑫磊3, 陈庆炜1, 徐晖1, 李涛1
1 中国民航大学交通科学与工程学院,天津 300300
2 交通部机场工程安全与长期性能科研基地,天津 300300
3 中国人民解放军联勤保障部队工程大学,重庆 401331
Experimental Study on the Changing Law of Compressive Strength and the Sintering Mechanism of Compacted Snow
HUO Haifeng1,2, JIA Wentao1, SUN Tao3,*, CHENG Xinlei3, CHEN Qingwei1, XU Hui1, LI Tao1
1 School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
2 Ministry of Transport Airport Engineering Safety and Long Term Performance Research Base, Tianjin 300300, China
3 Engineering University of the Joint Logistics Support Force, PLA, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 18116KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无侧限抗压强度是评价压实雪工程性质的重要强度指标,针对不同因素下压实雪的强度变化规律及变化机制进行了系统性试验分析。研究揭示了雪的两种烧结机制,当水汽压较低时,雪先升华为气态水,水分子在孔隙中做布朗运动,并在不同雪花间形成氢键;当水汽压较高时,雪先熔化为液态水,液态水沿着雪花表面迁移,并冻结为固态,两种机制均导致雪从散体结构变为团簇结构。随着烧结温度、初始密度的增加,无侧限抗压强度不断提高;烧结15 d后,强度达到峰值,之后变化较小。随着加载速率的增大,抗压强度先增大后快速减小再减速放缓,破坏模式从鼓胀型向剪切型再向劈裂型转变,在速率5 mm·min-1时强度达峰值,在速率10 mm·min-1后强度下降趋势放缓。以初始密度、烧结温度和烧结时间作为变量,对无侧限抗压强度发展采用神经网络预测具有良好的适用性。研究成果对于科学认识压实雪的强度变化进而指导冰雪工程建设具有较好的支撑作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍海峰
贾汶韬
孙涛
成鑫磊
陈庆炜
徐晖
李涛
关键词:  压实雪  烧结机制  无侧限抗压强度  相变  神经网络    
Abstract: The unconfined compressive strength serves as a crucial index for evaluating the engineering properties of compacted snow. A systematic investigation has been conducted to elucidate the strength change patterns and mechanisms of compacted snow under various influencing factors. The study identifies two primary mechanisms responsible for the sintering phenomenon of snow. At low water vapor pressure, snow sublimates into gaseous water, with water molecules undergoing Brownian motion within the pores and forming hydrogen bonds between distinct snowflakes. Conversely, at high water vapor pressure, snow initially melts into liquid water, which migrates along the surfaces of the snowflakes and subsequently refreezes into a solid state. Both mechanisms contribute to the transformation of snow from a bulk structure to a clustered structure. An increase in sintering temperature and initial density correlates with enhanced unconfined compressive strength, peaking after 15 days of sintering, after which only minimal changes are observed. As the loading rate increases, the compressive strength initially rises, then decreases, and ultimately stabilizes, peaking at a rate of 5 mm·min-1 and stabilizing beyond 10 mm·min-1, and the damage mode transits from bulging to shear and finally to cleavage. Furthermore, the application of a neural network to predict unconfined compressive strength based on initial density, sintering temperature, and sintering time demonstrates strong applicability. The findings provide significant insights into the strength variations of compacted snow, thereby offering valuable guidance for the construction of snow and ice projects.
Key words:  compacted snow    sintering mechanism    unconfined compressive strength    phase change    neural network
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU5  
基金资助: 国家重点研发计划(2022YFC2807101);中央高校基金(3122020040)
通讯作者:  *孙涛,博士,中国人民解放军联勤保障部队工程大学副教授。目前主要从事工程抢修抢建、装配式建筑等方面的研究工作。suntao_tju@126.com   
作者简介:  霍海峰,博士,中国民航大学交通科学与工程学院副教授、硕士研究生导师。目前从事极地雪跑道、交通基础设施方面的研究。
引用本文:    
霍海峰, 贾汶韬, 孙涛, 成鑫磊, 陈庆炜, 徐晖, 李涛. 压实雪抗压强度变化规律及烧结机制试验研究[J]. 材料导报, 2025, 39(23): 24120101-8.
HUO Haifeng, JIA Wentao, SUN Tao, CHENG Xinlei, CHEN Qingwei, XU Hui, LI Tao. Experimental Study on the Changing Law of Compressive Strength and the Sintering Mechanism of Compacted Snow. Materials Reports, 2025, 39(23): 24120101-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120101  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120101
1 Hong J, Talalay P, Man T, et al. Journal of Glaciology, 2022, 68(272), 1107.
2 Huo H, Yang Y, Sun T, et al. Materials Reports, 2024, 38(5), 44(in Chinese).
霍海峰, 杨雅静, 孙涛, 等. 材料导报, 2024, 38(5), 44.
3 Abele G. Deformation of snow under rigid plates at a constant rate of penetration. US Army Cold Regions Research & Engineering Laboratory, USA, 1970.
4 Jellinek H H G. Journal of Glaciology, 1959, 3(25), 345.
5 Abele G, Frankenstein G E. Snow and ice properties as related to roads and runways in Antarctica. US Army Cold Regions Research & Engineering Laboratory, USA, 1967.
6 White G M. International Journal of Pavement Research and Technology. 2018, 11, 311.
7 Colbeck S C. Bulletin of the American Meteorological Society, 1983, 64(6), 602.
8 Fu X. Study on the thermal characteristics and mechanical properties of seasonal snow in northeast China. Master’sThesis, Northeast Agricultural University, China, 2020(in Chinese).
富翔. 东北地区季节性积雪热特性及力学性质研究. 硕士学位论文, 东北农业大学, 2020.
9 Capelli A, Reiweger I, Frontiers in Physics, 2020, 8, 236.
10 Kinosita S. Physics of Snow and Ice, proceedings, 1967, 1(2), 911.
11 Lintzén N, Edeskär T. Journal of Cold Regions Engineering, 2015, 29(4), 04014020.
12 Gow A J, Journal of Glaciology, 1963, 4(35), 521.
13 Gold L W. Journal of Glaciology, 1956, 2(20), 719.
14 Lehning M, Cold Regions Science and Technology, 2002, 35(3), 147.
15 Christon M, Burns P J, Numerical Heat Transfer, 1994, 25(3), 259.
16 Ramseier R O, Keeler C M. Journal of Glaciology, 1966, 6(45), 421.
17 Miller D A, Adams E E, Brown R L. Cold regions Science and Technology, 2003, 37(3), 213.
18 Flin F, Brzoska J B. Annals of Glaciology, 2008, 49, 17.
19 Chen S, Baker I. Hydrological processes, 2010, 24(14), 2034.
20 Huo H, Hu B, Li T, et al. Cold Regions Science and Technology, 2023, 216, 103993.
21 Blackford J R. Journal of Physics D, Applied Physics, 2007, 40(21), R355.
22 Colbeck S C. Reviews of Geophysics, 1982, 20(1), 45.
23 Colbeck S C. Journal of Applied Physics, 1998, 84(8), 4585.
24 Adams E E, Miller D A, Journal of Applied Physics, 2001, 90(11), 5782.
25 Van Herwijnen A, Miller D A. Journal of Glaciology, 2013, 59(214), 269.
26 Zhuang F. Experimental study on snow hardness and its testing technology. Master’s Thesis, Dalian University of Technology, China, 2019 (in Chinese).
庄峰. 积雪硬度及其测试技术的实验研究. 硕士学位论文, 大连理工大学, 2019.
27 Zhang N. Experimental study on the relationship between hardness and density of snow in different shape. Master’sThesis, Dalian University of Technology, China, 2022 (in Chinese).
张宁. 不同形态雪硬度和密度关系的试验研究. 硕士学位论文, 大连理工大学, 2022.
28 Colbeck S C. Philosophical Magazine A, 1979, 39(1), 13.
29 Marsh P. Cold Regions Science and Technology, 1987, 14(1), 23.
30 Colbeck S C. Journal of Colloid and Interface Science, 1979, 72(3), 371.
31 Bader H. Snow and its metamorphism. Snow, Ice and Permafrost Research Establishment, USA, 1954.
32 Zhang X, Sun P, Yan T, et al. Progress in Solid State Chemistry, 2015, 43(3), 71.
33 Li F, Li Z, Men Z, et al. Spectroscopy and Spectral Analysis, 2017, 37(6), 1683(in Chinese).
李发兵, 李占龙, 门志伟, 等. 光谱学与光谱分析, 2017, 37(6), 1683.
[1] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[2] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[3] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[4] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[5] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[6] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[7] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[8] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[9] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[10] 杨帆, 柳和生, 匡唐清, 梁健康. 基于可视化的液态二氧化碳辅助注塑工艺穿透过程的研究[J]. 材料导报, 2025, 39(21): 24070128-7.
[11] 贾亮, 张玮玮, 陈振瑞. 相变石蜡改性玻化微珠保温砂浆的导热性能[J]. 材料导报, 2025, 39(21): 24100132-5.
[12] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[13] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[14] 肖世杰, 茆峰, 邹青, 曾献, 燕青芝. 冷压成型-无压烧结制备高强度氧化铋陶瓷[J]. 材料导报, 2025, 39(16): 24090140-7.
[15] 王汇杰, 胡江涛, 盖晓倩, 刘馨蔓, 李仁爱, 肖惠宁, 刘超. 纳米纤维素在相变储能领域的应用研究进展[J]. 材料导报, 2025, 39(16): 24080046-12.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed