Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100137-7    https://doi.org/10.11896/cldb.24100137
  高分子与聚合物基复合材料 |
基于近场动力学的木材销槽承压非线性数值模拟与试验研究
甘心怡, 舒展*, 谢金伟
上海大学力学与工程科学学院,上海 200444
Peridynamics-based Nonlinear Numerical Analysis and Experimental Verification on Dowel-bearing Behavior of Glulam Embedment
GAN Xinyi, SHU Zhan*, XIE Jinwei
School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 24954KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木材绿色低碳,在建筑业得到越来越多的推广与应用,而针对木构件的数值建模与分析需准确地把握木材的非线性。本研究基于近场动力学理论框架,开发并拓展近场动力学的各向异性木材模型,并首次将该方法应用于分析木结构在销轴承压下的变形与开裂损伤问题。参考ASTM D5764-97a,选用直径为8 mm和24 mm的两类销轴,对胶合木销槽承压试件进行顺纹和横纹加载。试验主要破坏结果包括顺纹竖向劈裂与横纹压溃变形。相较于横纹承压的延性破坏,顺纹承压极其容易发生严重的脆性劈裂。两种直径顺纹加载试件的销槽承压强度相较横纹试件分别提高了118%和256%。在不同加载情况下,木材损伤沿纹理方向扩展,且随着直径的增大,试件破坏更加显著。随着销轴直径从8 mm增大到24 mm,顺纹和横纹试件的销槽承压强度分别降低了33%和59%。同时,采用木材的近场动力学模型对该试验进行数值模拟。模拟结果与试验数据在裂纹位置、破坏发生时刻荷载、荷载-位移曲线等方面均吻合较好,荷载-位移曲线的皮尔逊相关系数均在0.98以上,证明提出的近场动力学模型能有效预测不同销槽承压破坏模式、承载性能和力学行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘心怡
舒展
谢金伟
关键词:  木材  近场动力学  销连接  销槽承压强度  胶合木结构    
Abstract: Timber material is sustainable and low carbon, therefore being more and more promoted and applied in the construction industry. Nonetheless, an accurate grasp of the material nonlinearity is important to numerically model and analyze the timber components. In this study, an anisotropic model based on peridynamics was developed and extended to analyze deformation and cracking damage in wood components under dowel bearing loads. Based on ASTM D5764-97a, two types of dowels with diameters of 8 mm and 24 mm were selected to test specimens of glulam dowel joints under parallel and perpendicular grain loading. The main failure results observed included longitudinal splitting along the grain and ductile crushing deformation perpendicular to the grain. Compared to the ductile failure in perpendicular loading, the parallel loading condition was prone to severe brittle splitting. Compared to perpendicular loaded, the bearing strength of the glulam specimens under parallel grain loading with two different diameters increased by 118% and 256%. Under different loading conditions, wood damage extended along the grain direction, and with increasing diameter, the specimen failure became more significant. As the dowel diameter increased from 8 mm to 24 mm, the bearing strength for the parallel and perpendicular grain specimens decreased by 33% and 59%, respectively. Additionally, a PD model for wood was used to numerically simulate the experimental results. The simulated results showed strong agreement with tested data in terms of crack locations and load-displacement curves, with Pearson correlation coefficients exceeding 0.98. The PD model effectively captured the various failure modes, bearing capacities, and mechanical behavior of the dowel-bearing specimens under different conditions.
Key words:  timber    peridynamics    dowel connection    dowel-bearing strength    glulam timber structure
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU366  
基金资助: 上海市艺术科学规划项目(YB2023-A-009)
通讯作者:  *舒展,博士,上海大学力学与工程科学学院土木工程系副教授、博士研究生导师。研究以“高性能、韧性”建筑结构为主,充分探讨双碳大趋势下混合结构体系。其中包含低震损、韧性木混合结构体系。同时结合人工智能技术、低碳材料等多种措施,通过力学试验、数值与理论相结合的方式探索建筑结构高效的工程木材料减碳与固碳技术。shuz@shu.edu.cn   
作者简介:  甘心怡,上海大学力学与工程科学学院硕士研究生,在舒展副教授的指导下开展木结构的研究。
引用本文:    
甘心怡, 舒展, 谢金伟. 基于近场动力学的木材销槽承压非线性数值模拟与试验研究[J]. 材料导报, 2025, 39(21): 24100137-7.
GAN Xinyi, SHU Zhan, XIE Jinwei. Peridynamics-based Nonlinear Numerical Analysis and Experimental Verification on Dowel-bearing Behavior of Glulam Embedment. Materials Reports, 2025, 39(21): 24100137-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100137  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100137
1 Fu H Y, He M J. Journal of Building Materials, 2023, 26(10), 1117(in Chinese).
付海燕, 何敏娟. 建筑材料学报, 2023, 26(10), 1117.
2 Yang R Y, Zhang X F, Yuan Q, et al. Journal of Forestry Engineering, 2020, 5(5), 131(in Chinese).
杨茹元, 张晓凤, 袁权, 等. 林业工程学报, 2020, 5(5), 131.
3 Tuhkanen E, Molder J, Schickhofer G. Engineering Structures, 2018, 176(1), 361.
4 Ou J J, Long W G, Jin H, et al. Structures, 2023, 51, 1257.
5 Xu B H, Bouchair A, Taazount M, et al. Journal of Wood Science, 2013, 59(1), 17.
6 Cao J, Xiong H, Liu Y. Construction and Building Materials, 2021, 270, 121380.
7 Dourado N, Pereira F, Moura M. Engineering Structures, 2012, 34, 342.
8 Huang D, Zhang Q, Qiao P Z, et al. Advances in Mechanics, 2010, 40(4), 448(in Chinese).
黄丹, 章青, 乔丕忠, 等. 力学进展, 2010, 40(4), 448.
9 Qin H Y, Liu Y M, Huang D. Journal of Zhejiang University (Engineering Science), 2018, 52(3), 497(in Chinese).
秦洪远, 刘一鸣, 黄丹. 浙江大学学报(工学版), 2018, 52(3), 497.
10 Shen F, Zhang Q, Huang D, et al. Journal of Computational Mechanics, 2013, 30(S1), 79(in Chinese).
沈峰, 章青, 黄丹, 等. 计算力学学报, 2013, 30(S1), 79.
11 Oterkus E, Madenci E. Journal of Mechanics of Materials and Structures, 2012, 7(1), 45.
12 Hai S A, Cheng Z Q, Li M H. American Journal of Engineering Research, 2020, 9(7), 71.
13 Silling S A. Journal of the Mechanics and Physics of Solids, 2000, 48(1), 175.
14 Liu W, Yan K, Li J Q, et al. Construction and Building Materials, 2020, 268(4), 121190.
15 Kharouf N, Mcclure G, Smith I. Computers and Structures, 2003, 81(8-11), 747.
16 Oterkus E, Madenci E, Weckner O, et al. Composite Structure, 2012, 94(3), 839.
17 Ha Y D, Bobaru F. International Journal of Fracture, 2010, 162(1/2), 229.
18 Xu J F, Askari A, Weckner O. Journal of Aerospace Engineering, 2008, 21(3), 187.
19 NDS-2015. National design and specification for wood construction, USA, 2015.
20 ASTM D5764-97a. Standard test method for evaluating dowel-bearing strength of wood and wood-based products, USA, 2018.
21 Shu Z, Li Z, Yu X S, et al. Construction and Building Materials, 2019, 213, 675.
22 Zhang Q, Gu X, Yu Y T. Journal of Theoretical and Applied Mechanics, 2016, 48(1), 56(in Chinese).
章青, 顾鑫, 郁杨天. 力学学报, 2016, 48(1), 56.
23 Dai Z L, Xie J W, Lu Z T, et al. Mathematics, 2021, 9(22), 2848.
[1] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[2] 丁一丁, 陈洋羊, 卿彦. 木竹衍生硬碳材料在钠离子电池中的应用[J]. 材料导报, 2025, 39(20): 24090167-10.
[3] 彭婷婷, 杨兆哲, 符启良, 冯鑫浩, 吴智慧, 刘洪海. 木材预处理技术的研究进展与应用综述[J]. 材料导报, 2025, 39(18): 24070211-15.
[4] 初石民, 李芸琪, 林兰英, 王东, 傅峰. 载荷作用下木材的变形和破坏行为机制及影响因素研究进展[J]. 材料导报, 2025, 39(17): 24090106-8.
[5] 郭首政, 邢东. 纳米材料在木材超疏水领域的应用[J]. 材料导报, 2025, 39(14): 24050202-10.
[6] 党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
[7] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[8] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[9] 温佳璐, 刘文静, 张明辉. 木材吸湿特性的研究方法[J]. 材料导报, 2024, 38(18): 23030197-9.
[10] 王祺, 冯鑫浩, 刘新有. 古旧木材加固保护研究进展[J]. 材料导报, 2024, 38(1): 22070091-19.
[11] 郭登康, 郭耐, 傅峰, 杨昇, 李改云, 储富祥. 有机物改性增强木材物理力学性能的研究进展[J]. 材料导报, 2023, 37(22): 22020187-11.
[12] 刘金明, 张一甫, 甘卫星, 莫海林. 糖基三聚氰胺甲醛树脂木材胶黏剂的研究进展[J]. 材料导报, 2023, 37(17): 21120170-7.
[13] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[14] 高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
[15] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed