Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24090109-11    https://doi.org/10.11896/cldb.24090109
  金属与金属基复合材料 |
反相催化剂的研究进展:影响因素及其应用
杨雪滢1,3, 许志志2,3, 赖峻宇1,3, 罗永明1,2,3, 陆继长1,3,*
1 昆明理工大学环境科学与工程学院,昆明 650000
2 昆明理工大学化学工程学院,昆明 650000
3 昆明理工大学挥发性有机物污染防治与资源化省创新团队与云南省高校恶臭挥发性有机物控制重点实验室,昆明 650000
Review of Advances in Inverse Catalysts: Influencing Factors and Applications
YANG Xueying1,3, XU Zhizhi2,3, LAI Junyu1,3, LUO Yongming1,2,3, LU Jichang1,3,*
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China
2 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650000, China
3 Yunnan Provincial Innovation Team for Volatile Organic Compounds Pollution Prevention and Resource Utilization, Kunming University of Science and Technology, Kunming 650000, China
下载:  全 文 ( PDF ) ( 32055KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 反相催化剂是一种将少量氧化物纳米颗粒均匀分散在活性组分(金属或金属氧化物)表面的固体催化剂。这种催化剂通过调整界面性质增加了界面活性位点密度,并利用表面氧化物纳米颗粒对金属活性相进行物理隔离,从而显著提升了催化性能,引起了众多研究者的关注。本文以传统负载型催化剂为切入点,重点介绍了反相催化剂相对于传统催化剂的优势,归纳了反相催化剂的制备方法,深入探讨了界面相互作用、晶面效应、尺寸效应等因素对催化剂性能的关键影响。最后,通过分析该催化剂在热催化、电催化和光催化领域的应用,展望了未来反相催化剂制备及应用的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨雪滢
许志志
赖峻宇
罗永明
陆继长
关键词:  反相催化剂  多相催化  界面作用  晶面效应  催化应用    
Abstract: Inverse catalysts are solid catalysts that consist of small amounts of oxide nanoparticles uniformly dispersed on the surface of active components, such as metals or metal oxides. These catalysts enhance catalytic performance by adjusting the interface properties to increase the density of active sites at the interface, and by using surface oxide nanoparticles to physically isolate the metal active phase. This unique design has attracted significant attention from researchers. This paper provides a comprehensive overview starting from conventional supported catalysts, highlighting the advantages of inverse catalysts over conventional catalysts. It summarizes the preparation methods for inverse catalysts and delves into the critical effects of interface interactions, crystal face effects, and size effects on catalyst performance. Finally, by analyzing the applications of inverse catalysts in heterogeneous catalysis, electrocatalysis, and photocatalysis, the paper discusses future trends for the preparation and application of inverse catalysts.
Key words:  inverse catalyst    multiphase catalysis    interface effect    crystal facet effect    catalytic application
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  X511  
基金资助: 国家自然科学基金(42030712;22106055;42477109;21966018);国家重点研发计划(2023YFB3810800);云南省重大科技专项(202302AG050002);云南省基础研究计划(202301AW070019;202201AT070086;202101BE070001-026);云南省兴滇人才支持计划(XDYC-QNRC-2022-0086)
通讯作者:  *陆继长,博士,昆明理工大学环境科学与工程学院副教授、硕士研究生导师,目前主要从事纳-微-介孔环境功能催化材料研发和大气环境污染控制等方面的研究工作。lujichangc7@kust.edu.cn   
作者简介:  杨雪滢,昆明理工大学环境科学与工程学院硕士研究生。目前主要研究领域为环境功能材料研发与含硫VOCs污染控制。
引用本文:    
杨雪滢, 许志志, 赖峻宇, 罗永明, 陆继长. 反相催化剂的研究进展:影响因素及其应用[J]. 材料导报, 2025, 39(21): 24090109-11.
YANG Xueying, XU Zhizhi, LAI Junyu, LUO Yongming, LU Jichang. Review of Advances in Inverse Catalysts: Influencing Factors and Applications. Materials Reports, 2025, 39(21): 24090109-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090109  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24090109
1 Hao P P, Xie M J, Chen S Y, Shan Y C, et al. Science Advances, 2020, 6(20), 7031.
2 Noritaka M, Makoto M. Chemical Reviews, 1998, 98(1), 199.
3 Hu X T, Jin Y P. Environmental Protection Science, 1994, 2(4), 1004(in Chinese).
胡小吐, 金应培. 环境保护科学, 1994, 2(4), 1004.
4 Liu C A, Sun D Z, Li W. Environmental Protection Science, 2003, 5(1), 1004(in Chinese).
刘长安, 孙德智, 李伟. 环境保护科学, 2003, 5(1), 1004.
5 Cinneide A O, Clarke J K A. Chemical Review, 1972, 7(2), 213.
6 Ye R P, Ma L X, Hong X L, et al. Angewandte Chemie International Edition, 2024, 63(3), 2317669.
7 Wang H. Promotional effect of surface-interfacial active sites on the Zr-Ce oxide solid solution surrounded Cu-based catalyst with inverse structure in CO2 hydrogenation. Master’s Thesis, Beijing University of Chemical Technology, China, 2021(in Chinese).
王浩. 新型铜基催化剂构筑、表界面结构调控及催化二氧化碳加氢制甲醇性能研究. 硕士学术论文, 北京化工大学, 2021.
8 Shen J P, Song C S. Catalysis Today, 2002, 7(1), 89.
9 Hurtado-Aular O, Ferullo R M, Belelli P G. Computational Materials Science, 2024, 233, 112741.
10 Gao Q, Li, Wen H, Liu P F, et al. Applied Surface Science, 2022, 607(7), 155118.
11 Wu C Y, Lin L L, Liu J J, et al. Nature Communications, 2020, 11(1), 5767.
12 Teng Z H, Yi X K, Zhang C H, et al. Applied Catalysis B-Environmental, 2023, 339, 123119.
13 Song C X, Zhao Z Y, Li H H, et al. Royal Society of Chemistry Advances, 2016, 6(105), 102931.
14 Yan X L, Zhang A A, Gao M Y, et al. Journal of Rare Earths, 2017, 35(12), 1216.
15 Georg-Maria S. Journal of Colloid and Interface Science, 1970, 34(3), 337.
16 Parastaev A, Muravev V, Osta E H, et al. Nature Catalysis, 2022, 5(11), 1051.
17 Zhang J, Medlin J W. Surface Science Reports, 2018, 73(4), 117.
18 Shirman T, Freeman D, Posner Y D, et al. Journal of the American Chemical Society, 2008, 130(26), 8162.
19 Ismael M. Solar Energy, 2020, 211(15), 522.
20 George M S. Chemical Reviews, 2010, 110(1), 111.
21 Zeng T B, Zhang C H. Journal of Materials Science, 2020, 55, 11535.
22 Li F, Parteder G, Allegretti F, et al. Journal of Physics: Condensed Matter, 2009, 21(13), 134008.
23 Schoiswohl J, Mittendorfer F, Surnev S, et al. Physical Review Journals, 2006, 97(12), 126102.
24 Surnev S, Fortunelli A, Netze P F. Chemical Reviews, 2012, 113(6), 4314.
25 Matsumoto T, Batzill M, Hsieh S, et al. Surface Science, 2004, 572, 127.
26 Tang X, Song C Q, Li H B, et al. Nature communications, 2024, 15(1), 3115.
27 Tang C L, Lv L P, Zhang L M, et al. Kinetics and Catalysis, 2017, 58(6), 800.
28 Shih H Y, Lee W H, Kao W C, et al. Scientific Reports, 2017, 7, 39717.
29 Ritala M, Leskelae M, Haussalo P A, et al. Physical Inorganic Chemistry, 1993, 24(47), 23.
30 Seo H O, Sim J K, Kim K D, et al. Applied Catalysis A: General, 2013, 451, 43.
31 Wang C L, Wang H W, Yao Q, et al. The Journal of Physical Chemistry C, 2015, 120(1), 478.
32 Gadkari A, Shinde T, Vasambekar P. Materials Chemistry and Physics, 2009, 114(2), 505.
33 Song C Q, Liu J J, Wang R H, et al. Nature Chemical Engineering, 2024, 1, 638.
34 Liu H W, Zhang R R, Liu S B, et al. ACS Catalysis, 2024, 14(13), 9927.
35 Chen J K, Su Y T, Meng Q J, et al. Angewandte Chemie-International Edition, 2023, 62(49), 2310191.
36 Zhu Y F, Zhang X, Koh K, et al. Nature Communications, 2020, 11, 3269.
37 Leybo D, . Etim J U, Monai M, et al. Chemical Society Reviews, 2024, 21, 10373.
38 Liu W Q, Dang S S, Cheng S F, et al. ACS Catalysis, 2024, 14(9), 7097.
39 Gu Y B, Cai Q X, Chen X L, et al. Acta Physico-Chimica Sinica, 2016, 32(7), 1674.
40 Jennison D R, Dulub O, Hebenstreit W, et al. Surface Science, 2001, 492(1), 677.
41 Ren M Q, Qian K, Huang W X. Chemistry — a European Journal, 2019, 25(70), 15962.
42 Zhang Z H, Wang S S, Song R, et al. Nature Communications, 2017, 8(1), 488.
43 Fester J, Sung Z Z, Rodriguez-Fernandez J, et al. Journal of Physical Chemistry C, 2019, 123(28), 17407.
44 Zhang K, Li L F, Goniakowski J, et al. Journal of Catalysis, 2021, 393, 100.
45 Yan H, Yang C, Shao W P, et al. Nature Communications. 2019, 10, 3470.
46 Berg R V D, Prieto G, Korpershoek G, et al. Nature Communications, 2016, 7, 13057.
47 Li Y Y, Zhang Y S, Qian K, et al. ACS Catalysis, 2022, 12(2), 1268.
48 Goniakowski J, Noguera C. The Journal of Physical Chemistry C, 2019, 123(14), 9272.
49 Goniakowski J, Noguera C. The Journal of Physical Chemistry C, 2020, 124(15), 8186.
50 Huang W G, Liu Q F, Zhou Z W, et al. Nature Communications, 2020, 11(1), 2312.
51 Martynova Y, Liu B H, McBriarty M E, et al. Journal of Catalysis, 2013, 301, 227.
52 Li W, Feng X L, Zhang Z, et al. Advanced Functional Materials, 2018, 28(49), 1802559.
53 XuX Y, Lan T, Zhao G F, et al. Applied Catalysis B: Environmental, 2023, 334, 122839.
54 WuG S, Mao D S, Lu G Z, et al. Catalysis Letters, 2009, 130(1), 177.
55 Mayr L, Kloetzer B, Zemlyanov D, et al. Journal of Catalysis, 2015, 321, 123.
56 Wu C Y, Lin L L, Liu J J, et al. Nature Communications, 2020, 11(1), 5767.
57 Zou T S, Araujo T P, Krumeich F, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(1), 81.
58 Moncada J, Chen X B, Deng K X, et al. ACS Catalysis, 2023, 13(23), 15248.
59 Wang Y B, Ma R P, Shi Z P, et al. Chem. 2023, 9(10), 2931.
60 Wang H, Zhai T T, Wu Y F, et al. Advanced Science, 2023, 10(22), 2301706.
61 Yeo B S, Bell A T. Journal of the American Chemical Society, 2011, 133(14), 5587.
62 Walton A S, Fester J, Bajdich M, et al. American Chemical Society Nano, 2015, 9(3), 2445.
63 Shin D, Sinthika S, Choi M, et al. American Chemical Society Catalysis, 2014, 4(11), 4074.
64 Wu J D, Fan J C, Zhao X, et al. Angewandte Chemie International Edition, 2022, 61(34), 4.
65 Peng L S, Zheng X Q, Li L, et al. Applied Catalysis B: Environmental, 2019, 245, 122.
66 Dong Z, Yang B, Chang H B, et al. Royal Society of Chemistry Advances, 2020, 10(60), 36371.
67 Ying T T, Liu W, Yang L X, et al. Separation and Purification Technology, 2024, 330, 125272.
68 Zhang L J, Wu Y L, Tsubaki N, et al. Acta Physico-Chimica Sinica, 2023, 39(12). 2302051.
69 Qin X T, Xu M, Guan J X, et al. Nature Energy, 2024, 9, 154.
70 Senanayake S D, Stacchiola D, Rodriguez J A. Accounts of Chemical Research, 2013, 46(8), 1702.
71 Jacobson M. Z, Colella W G, Golden D M. Science, 2005, 308(5730), 1901.
72 Yu K M K, Tong W Y, West A, et al. Nature Communications, 2012, 3, 1230.
73 Yang C X, Zhang Q, Xing X, et al. Journal of the Chinese Society of Rare Earths, 2016, 34(2), 151(in Chinese).
杨笑春, 张青, 邢鑫, 等. 中国稀土学报, 2016, 34(2), 151.
74 Alvarez A, Bansode A, Urakawa A, et al. Chemical Reviews, 2017, 117(14), 9804.
75 Winter M, Brodd R J. Chemical Reviews, 2004, 104(10), 4245.
76 Debe M K. Nature, 2012, 486(7401), 43.
77 Steele Brian C H, Heinzel A. Nature, 2001, 414(6861), 345.
78 Li Y Y, Yuan M W, Wang D, et al. Journal of Beijing Normal University Natural Science, 2021, 57(5), 694.
79 Khan M M, Ansari S A, Pradhan D, et al. Industrial & Engineering Chemistry Research, 2014, 53(23), 9754.
80 Xie S L, Wang Z L, Cheng F L, et al. Nano Energy, 2017, 34, 313.
[1] 薛世翔, 吴攀, 赵亮, 雷琬莹. NiO@CoFe LDH/NF纳米片阵列用于高效析氧反应[J]. 材料导报, 2025, 39(11): 24040131-7.
[2] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[3] 吴智恒, 黄伊琳, 毕雁冰, 梁立喆, 归立发, 李卫庆, 沈培康, 田植群. 石墨烯及其衍生物改性沥青的研究进展[J]. 材料导报, 2024, 38(1): 22040410-9.
[4] 游子娟, 陈汉林. 高熵氧化物合成及催化应用的研究进展[J]. 材料导报, 2023, 37(24): 22090127-11.
[5] 郝玮, 王杰, 胥生元, 高文生, 谢克锋. BiOCl光催化剂的制备及应用研究综述[J]. 材料导报, 2023, 37(20): 22030313-10.
[6] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[7] 吴英柯,马建中,鲍艳. 聚合物基纳米复合材料的界面作用研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 434-442.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed