Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24080136-11    https://doi.org/10.11896/cldb.24080136
  无机非金属及其复合材料 |
钙钛矿基叠层太阳电池的最新进展及发展趋势
王芹芹1,*, 黄玮1, 顾斯雯2, 丁建宁1
1 扬州大学碳中和技术研究院,江苏 扬州 225101
2 常州大学材料科学与工程学院,江苏 常州 213164
Recent Progress and Development Trend of Perovskite-based Tandem Solar Cells
WANG Qinqin1,*, HUANG Wei1, GU Siwen2, DING Jianning1
1 Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225101, Jiangsu, China
2 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
下载:  全 文 ( PDF ) ( 16289KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单结太阳电池的功率转换效率受到Shockley-Quiesser极限的限制,实现高效率的有效途径是开发叠层太阳电池。近些年,随着有机/无机钙钛矿太阳电池迅速发展,钙钛矿材料优异的光电性能和可调的带隙使其成为与硅、铜铟镓硒(CIGS)和有机太阳电池结合开发叠层太阳电池的潜在候选者。本文介绍了叠层太阳电池串联结构的种类;分析并探讨了与钙钛矿叠层的主流太阳电池在两端与四端结构上涉及的材料选择、界面缺陷调控、工作性能、转化效率等内容及其优劣势;最后,讨论了叠层太阳电池在器件结构、效率、大面积制造、稳定性、成本等五个方面面临的挑战,并从这五个角度展望了未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王芹芹
黄玮
顾斯雯
丁建宁
关键词:  叠层太阳电池  钙钛矿    CIGS  有机太阳电池    
Abstract: The power conversion efficiency of single-junction solar cells is limited by the Shockley-Quiesser limit. An effective way to realize high efficiency is to develop tandem solar cells. With the rapid development of organic/inorganic perovskite solar cells in recent years, the excellent photovoltaic properties and tunable bandgap of perovskite materials make them potential candidates for the development of tandem solar perovskite cells in combination with silicon, CIGS and organic solar cells. This paper introduces the types of tandem structures of tandem solar cells;analyzes and discusses the mainstream solar cells with perovskite stacks in terms of two and four terminal structures regarding material selection, regulation of interfacial defects, operating performance, conversion efficiency, and their advantages and disadvantages. At the end, it addresses the five obstacles that tandem solar cells will encounter: device structure, efficiency, large-area fabrication, stability, and cost. It also anticipates the direction of future development from these five angles.
Key words:  tandem solar cell    perovskite    silicon    CIGS    organic solar cell
发布日期:  2025-10-27
ZTFLH:  TM914  
基金资助: 国家自然科学基金(62304199)
通讯作者:  *王芹芹,博士,扬州大学碳中和技术研究院副教授、硕士研究生导师。目前主要围绕高效晶硅电池产业化技术和工程应用及晶硅/钙钛矿叠层电池前沿技术开展研究。wangqinqin@yzu.edu.cn   
引用本文:    
王芹芹, 黄玮, 顾斯雯, 丁建宁. 钙钛矿基叠层太阳电池的最新进展及发展趋势[J]. 材料导报, 2025, 39(20): 24080136-11.
WANG Qinqin, HUANG Wei, GU Siwen, DING Jianning. Recent Progress and Development Trend of Perovskite-based Tandem Solar Cells. Materials Reports, 2025, 39(20): 24080136-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080136  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24080136
1 Tang S X, Yan J J, Chen L, et al. Solar Energy Materials and Solar Cells, 2024, 278, 113182.
2 Dutta A, Maiti D, Katarkar A, et al. ACS Applied Bio Materials, 2023, 6 (8), 3266.
3 Werner J, Barraud L, Walter A, et al. ACS Energy Letters, 2016, 1(2), 474.
4 Yu X T, Liu C, Li C, et al. ACS Applied Materials & Interfaces, 2024, 16(24), 31114.
5 Marti A, Luque A. Nature Communications, 2015, 6, 6902.
6 Qiu Z W, Xu Z Q, Li N X, et al. Nano Energy, 2018, 53, 798.
7 Chen B, Yu Z S, Liu K, et al. Joule, 2019, 3(1), 177.
8 Lin H, Yang M, Ru X N, et al. Nature Energy, 2023, 8(8), 789.
9 Leijtens T, Bush K A, Prasanna R, et al. Nature Energy, 2018, 3, 828.
10 Li Z G. In:SNEC 17th International Solar Photovoltaic and Smart Energy Conference & Exhibition. Shanghai, China, 2024(in Chinese).
李振国. SNEC第十七届国际太阳能光伏与智慧能源大会暨展览会. 上海, 2024.
11 Loper P, Moon S J, Nicolas S M D, et al. Physical Chemistry Chemical Physics, 2015, 17(3), 1619.
12 Asmontas S, Gradauskas J, Griguceviciene A, et al. Ukrainian Journal of Physical Optics, 2022, 23(4), 193.
13 Sanglee K, Sakunkaewkasem S, Piromjit C, et al. Solar Energy Materials and Solar Cells, 2023, 253, 112235.
14 Wang Z Y, Zhu X J, Zuo S N, et al. Advanced Functional Materials, 2020, 30(4), 1908298.
15 Samantaray M R, Chander N, Ghosh D S, et al. Applied Physics A, 2022, 128, 111.
16 Lee P H, Wu T T, Li C F, et al. Solar RRL, 2022, 6(4), 2100891.
17 Yao Yu X, Hang P J, Li B, et al. Small, 2022, 18(38), 2203319.
18 Ma X P, Pan J Y, Wang Y L, et al. Chemical Engineering Journal, 2022, 445, 136626.
19 Ma X P. Highly efficient and stable large-area wide bandgap chalcogenide modules and stacked cells. Master’s Thesis, Wuhan University of Technology, China, 2022 (in Chinese).
马先普. 高效稳定大面积宽带隙钙钛矿模组及叠层电池. 硕士学位论文, 武汉理工大学, 2022.
20 Tyagi B, Kumar N, Lee H B, et al. Journal of Alloys and Compounds, 2023, 960, 170970.
21 Yan L, Qiu S D, Yu B H, et al. Advanced Energy and Sustainability Research, 2022, 3(6), 2100199.
22 Kanoun A A, Goumri-Said S, Kanoun M B. International Journal of Energy Research, 2021, 45(7), 10538.
23 Chen B, Baek S W, Hou Y, et al. Nature Communications, 2020, 11, 1257.
24 Chen Y, Ying Z Q, Li X, et al. Nano Energy, 2022, 100, 107529.
25 Fang Z, Zhang F, Qin X J, et al. Acta Physica Sinica, 2023, 72(5), 401 (in Chinese).
方正, 张飞, 秦校军, 等. 物理学报, 2023, 72(5), 401.
26 Mailoa J P, Bailie C D, Johlin E C, et al. Applied Physics Letters, 2015, 106, 121105.
27 Sahli F, Werner J, Kamino B A, et al. Nature Materials, 2018, 17, 820.
28 Zheng J H, Lau C F J, Mehrvarz H, et al. Energy & Environmental Science, 2018, 11, 2432.
29 Zheng J H, Mehrvarz H, Ma F J, et al. ACS Energy Letters, 2018, 3(9), 2299.
30 Shen H P, Omelchenko S T, Jacobs D A, et al. Science Advances, 2018, 4(12), eaau9711.
31 Bush K A, Palmstrom A F, Yu Z S J, et al. Nature Energy, 2017, 2, 17009.
32 Kabakli O S, McMullin K, Messmer C, et, al. Solar RRL, DOI: 10. 1002/solr. 202400454.
33 Bush K A, Manzoor S, Frohna K, et al. ACS Energy Letters, 2018, 3(9), 2173.
34 Mazzarella L, Lin Y H, Kirner S, et al. Advanced Energy Materials, 2019, 9(14), 1803241.
35 Ying Z Q, Guo X C, Du H J, et al. ACS Energy Letters, 2024, 9(8), 4018.
36 Nogay G, Sahli F, Werner J, et al. ACS Energy Letters, 2019, 4(4), 844.
37 Kim C U, Yu J C, Jung E D, et al. Nano Energy, 2019, 60, 213.
38 Kim K, Kim M, Lee H, et al. Small, 2024, 20(38), 2402341.
39 Sharma R K, Srivastava A, Punia U, et al. Sustainable Energy & Fuels, 2024, 8(20), 4799.
40 Nishimura N, Kanda H, Katoh R, et al. Journal of Materials Chemistry A, 2024, 12(26), 15631.
41 Cao F, Zhan S Q, Dai X F, et al. Journal of the American Chemical Society, 2024, 146(17), 11782.
42 Ding Z T, Kan C X, Jiang S G, et, al. Nature Communications, 2024, 15(1), 8453.
43 Hou Y, Aydin E, Bastiani M D, et al. Science, 2020, 367(6482), 1135.
44 Xu J X, Boyd C C, Yu Z S J, et al. Science, 2020, 367(6482), 1097.
45 Kim D, Jung H J, Park I J, et al. Science, 2020, 368(6487), 155.
46 Su S X, Ying Z Q, Chen X K, et al. Acta Energiae Solaris Sinica, 2024, 45(4), 23 (in Chinese).
苏诗茜, 应智琴, 陈邢凯, 等. 太阳能学报, 2024, 45(4), 23.
47 Pei F T, Chen Y H, Wang Q Q, et al. Nature Communications, 2024, 15, 7024.
48 Zhang D Y, Li B, Hang P J, et al. Energy & Environmental Science, 2024, 17, 3848.
49 Bremner S P, Levy M Y, Honsberg C B. Progress in Photovoltaics, 2008, 16(3), 225.
50 Lim J, Park N G, Seok S I, et al. Energy & Environmental Science, 2024, 17(13), 4390.
51 Yao Y Q, Lv F;Luo L, et al. Solar RRL, 2020, 4(3), 1900396.
52 Tong J H, Song Z N, Kim D H, et al. Science, 2019, 364(6439), 475.
53 Nejand B A, Hossain I M, Jakoby M, et al. Advanced Energy Materials, 2020, 10(5), 1902583.
54 Chang Z. Preparation of narrow bandgap Sn-Pb hybrid chalcogenide photovoltaic cells and their applications. Master’s Thesis, Changchun University of Technology, China, 2024 (in Chinese).
常祯. 窄带隙锡-铅混合钙钛矿光伏电池的制备及其应用研究. 硕士学位论文, 长春工业大学, 2024.
55 Jiang F Y, Liu T F, Luo B W, et al. Journal of Materials Chemistry A, 2016, 4, 1208.
56 Shao Y F, Zheng D X, Liu L, et, al. ACS Energy Letters, 2024, 9(10), 4892.
57 Wang C L, Zhao Y, Ma T S, et al. Nature Energy, 2022, 7(8), 744.
58 Zhao D W, Chen C, Wang C L, et al. Nature Energy, 2018, 3(12), 1093.
59 Palmstrom A F, Eperon G E, Leijtens T, et al. Joule, 2019, 3(9), 2193.
60 Yu Z H, Yang Z B, Ni Z Y, et al. Nature Energy, 2020, 5, 657.
61 Lin R X, Xiao K, Qin Z Y, et al. Nature Energy, 2019, 4, 864.
62 Xiao K, Lin R X, Han Q L, et al. Nature Energy, 2020, 5(11), 870.
63 Electronics Quality, 2024(3), 51 (in Chinese).
电子质量, 2024(3), 51.
64 Wang Y R, Lin R X, Liu C S Y, et al. Nature, DOI: 10. 1038/s41586-024-08158-6.
65 Liu X X, Gong J B, Xiao X D. Chinese Science Bulletin (Chinese Version), 2023, 68(24), 3120.
66 Chirila A, Buecheler S, Pianezzi F, et al. Nature Materials, 2011, 10, 857.
67 Bailie C D, Christoforo M G, Mailoa J P, et al. Energy & Environmental Science, 2015, 8, 956.
68 Kim D H, Muzzillo C P, Tong J H, et al. Joule, 2019, 3, 1734.
69 Gharibzadeh S, Hossain I M, Fassl P, et al. Advanced Functional Materials, 2020, 30(19), 1909919.
70 Feurer T, Carron R, Sevilla G T, et al. Advanced Energy Materials, 2019, 9, 1901428.
71 Zhang Y, Tang Z H, Zhang Z Y, et al. Journal of Energy Chemistry, 2024, 97, 622.
72 Todorov T, Gershon T, Gunawan O, et al. Advanced Energy Materials, 2015, 5(23), 1500799.
73 Al-Ashouri A, Magomedov A, Roß M, et al. Energy & Environmental Science, 2019, 12, 3356.
74 Lang F, Jost M, Frohna K, et al. Joule, 2020, 4(5), 1054.
75 Xiao Z, Jia X, Ding L M. Science Bulletin, 2017, 62(23), 1562.
76 Meng L X, Zhang Y M, Wan X J, et al. Science, 2018, 361(6407), 1094.
77 An Q S, Ma X L, Gao J H, et al. Science Bulletin, 2019, 64(8), 504.
78 Li Z, Wu S F, Zhang J, et al. Advanced Energy Materials, 2020, 10(18), 2000361.
79 Chen X, Jia Z Y, Chen Z, et al. Joule, 2020, 4(7), 1594.
80 Wang P Y, Zhang X W, Zhou Y Q, et al. Nature Communications, 2018, 9, 2225.
81 Wang S J, Chen D J, Xu K Y, et al. ACS Energy Letters, 2024, 9(6), 2517.
82 Fang Z M, Liu L, Zhang Z M, et al. Science Bulletin, 2019, 64(8), 507.
83 Jia X, Liu L, Fang Z M. Journal of Materials Chemistry C, 2019, 7, 7207.
84 Zeng Q, Liu L, Xiao Z, et al. Science Bulletin, 2019, 64(13), 885.
85 Xie S K, Xia R X, Chen Z, et al. Nano Energy, 2020, 78, 105238.
86 Liu Q S, Jiang Y F, Jin K, et al. Science Bulletin, 2020, 65(4), 272.
87 Yuan J, Zhang Y Q, Zhou L Y, et al. Joule, 2019, 3(4), 1140.
88 Meng X, Jia Z R, Niu X X, et al. Nanoscale, 2024, 16(17), 8307.
89 Jiang Q, Zhao Y, Zhang X W, et al. Nature Photonics, 2019, 13, 460.
90 Zuo C T, Ding L M. Advanced Energy Materials, 2016, 7(2), 1601193.
91 Ying Z Q, Yang X, Wang X Z, et al. Advanced Materials, 2024, 36(37), 2311501.
92 Chen X, Jia Z Y, Chen Z, et al. Joule, 2020, 4(7), 1594.
93 Song Z N, Chen C, Li C W, et al. Semiconductor Science and Technology, 2019, 34, 093001.
94 Domanski K, Correa-Baena J P, Mine N, et al. ACS Nano, 2016, 10(6), 6306.
95 Zhao L F, Kerner R A, Xiao Z G, et al. ACS Energy Letters, 2016, 1(3), 595.
96 Werner J, Niesen B, Ballif C. Advanced Materials Interfaces, 2018, 5(1), 1700731.
[1] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[2] 李涛, 吕国强, 李遇贤, 钱益超, 张杰. 光伏单晶硅片冲洗过程中应力分布的研究[J]. 材料导报, 2025, 39(7): 24010045-7.
[3] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[4] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[5] 王竟宇, 詹良通, 梁腾, 陈萍. 铸余渣固化工程渣土再生路基填料的性能与机制[J]. 材料导报, 2025, 39(5): 24020088-7.
[6] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[7] 谭彩凤, 王永生, 张清芳, 任铮, 恩溪弄, 刘儒平, 刘婕妤, 陈艳, 李葆, 李路海, 陈寅杰, 辛智青. 适用于硅胶基材的可拉伸导电油墨的研究进展[J]. 材料导报, 2025, 39(4): 23110023-7.
[8] 张金权, 阮章顺, 秦博, 付晓刚, 龙斌, 周张健, 恽迪. 二氧化硅纳米气凝胶保温材料与高温钠相容性试验研究[J]. 材料导报, 2025, 39(20): 24060077-6.
[9] 张爱, 袁浩然, 葛勇. 碱激发硅藻土/铝矾土胶凝材料的制备与性能研究[J]. 材料导报, 2025, 39(20): 24100122-6.
[10] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[11] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[12] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[13] 邓雨凤, 刘鹏, 刘子玉, 杨现锋. 纳米颗粒溶出钙钛矿电催化剂的研究进展[J]. 材料导报, 2025, 39(19): 24090017-7.
[14] 杨建军, 崔雅茹, 王国华, 李小明, 李锋, 陈雷, 杨树峰. PbO-FeOx-CaO-SiO2-ZnO高铅渣还原过程熔渣结构及性能的分子动力学模拟[J]. 材料导报, 2025, 39(19): 24090067-5.
[15] 徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed