Research Progress of Stretchable Conductive Inks for Silicone Substrates
TAN Caifeng1, WANG Yongsheng2, ZHANG Qingfang1, REN Zheng1, EN Xinong1, LIU Ruping1, LIU Jieyu1, CHEN Yan1, LI Bao1, LI Luhai1, CHEN Yinjie1, XIN Zhiqing1,*
1 Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China 2 Guizhou Province Renhuai Shenren Packaging & Printing Co., Ltd., Renhuai 564507, Guizhou, China
Abstract: Printed electronics are gradually developing from flexible electronics to stretchable electronics. It is of great significance to develop stretchable conductors with planar shape for stretchable electronics. A facile way to prepare soft but strong stretchable conductors is adopting a printing process on an elastic substrate using hybrid conductive inks containing conductive materials and elastic polymers. Silicone-based elastic substrates have good bio-compatibility, thermal stability, and chemical stability, as well as elasticity close to human skin. Silicone substrate has been used for skin electronic devices, intelligent soft robots, and wearable electronics, etc. For the sake of the non-polar properties of the silicone surface, the bonding strength between the printed ink layer and the silicone surface is the key for the application of stretchable conductive inks. This paper mainly outlines and compares two kinds of stretchable conductive inks for silicone substrates, and clarifies the influence of post-processing on the stretchability of the printed patterns. It points out that the adoption of conductive ink prepared by using a binder with non-polarity and a conductive component well compatible with the binder is the key to acquire stretchable conductors on the silicone substrates; and the hybridization of multiple conductive components, introducing porous structure to the ink layer, and Xenon lamp curing are conducive to the performance improvement of the produced silicone-based stretchable electrodes.
1 Wang Y, Qiu Y, Ameri S K, et al. NPJ Flexible Electronics, 2018, 2(1), 1. 2 Huang G W, Xiao H M, Fu S Y. Scientific Reports, 2015, 5(1), 13971. 3 Yan Z C, Pan T S, Wang D K, et al. ACS Applied Materials Interfaces, 2019, 11(13), 12261. 4 Stauffer F, Thielen M, Sauter C, et al. Advanced Healthcare Materials, 2018, 7(7), 1700994. 5 Chung M, Fortunato G, Radacsi N. Journal of the Royal Society Interface, 2019, 16(159), 20190217. 6 Madhvapathy S R, Ma Y, Patel M, et al. Advanced Functional Materials, 2018, 28(34), 1802083. 7 Su B T, Li J L, Xu H H, et al. Scientia Sinica Informationis, 2022, 52(1), 54 (in Chinese). 苏炳添, 李健良, 徐慧华, 等. 中国科学:信息科学, 2022, 52(1), 54. 8 Abu-Khalaf J M, Al-Ghussain L, Al-Halhouli A. Materials, 2018, 11(12), 2377. 9 Lin Y, Li Q S, Ding C, et al. Nano Research, 2022, 15(5), 4590. 10 Fuard D, Tzvetkova-Chevolleau T, Decossas S, et al. Microelectronic Engineering, 2008, 85(5-6), 1289. 11 Park S I, Ahn J H, Feng X, et al. Advanced Functional Materials, 2008, 18(18), 2673. 12 Moon Y J, Kim C, Choi E, et al. Nanomaterials, 2023, 13(4), 719. 13 Keller K, Grafinger D, Greco F. Frontiers in Materials, 2021, 8, 688133. 14 Won J, Mondal S, Park J, et al. Polymer Composites, 2020, 41(6), 2210. 15 Akter T, Kim W S. ACS Applied Materials Interfaces, 2012, 4(4), 1855. 16 Abu-Khalaf J, Saraireh R, Eisa S, et al. Sensors, 2018, 18(10), 3476. 17 Araki T, Nogi M, Suganuma K, et al. IEEE Electron Device Letters, 2011, 32(10), 1424. 18 Larmagnac A, Eggenberger S, Janossy H, et al. Scientific Reports, 2014, 4(1), 7254. 19 Li Z, Le T R, Wu Z K, et al. Advanced Functional Materials, 2015, 25(3), 464. 20 Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Nature Communications, 2015, 6(1), 7461. 21 Huttunen O H, Happonen T, Hiitola-Keinänen J, et al. Industrial & Engineering Chemistry Research, 2019, 58 (43), 19909. 22 Goh G L, Agarwala S, Yeong W Y. In: Proceedings of the 3rd International Conference on Progress in Additive Manufacturing. Singapore, 2018, pp. 109. 23 Park J, Myung J S, Cho D, et al. Advanced Electronic Materials, 2022, 9(2), 2201021. 24 Kim S H, Jung S, Yoon I S, et al. Advanced Materials, 2018, 30(26), 1800109. 25 Yoon I S, Oh Y, Kim S H, et al. Advanced Materials Technologies, 2019, 4(9), 1900363. 26 Yan H L. The investigation of three-dimensional direct writing to print flexible stretchable electronics. Master’s Thesis, Beijing University of Technology, China, 2017 (in Chinese). 阎海亮. 3D直写式打印柔性可拉伸电子材料的研究. 硕士学位论文, 北京工业大学, 2017. 27 Markvicka E J, Bartlett M D, Huang X, et al. Nature Materials, 2018, 17(7), 618. 28 Ford M J, Ambulo C P, Kent T A, et al. Proceedings of the National Academy of Sciences, 2019, 116(43), 21438. 29 Liu S, Kim S Y, Henry K E, et al. ACS Applied Materials & Interfaces, 2021, 13(24), 28729. 30 Chortos A, Hajiesmaili E, Morales J, et al. Advanced Functional Materials, 2020, 30(1), 1907375. 31 Sekitani T, Noguchi Y, Hata K, et al. Science, 2008, 321(5895), 1468. 32 Sekitani T, Nakajima H, Maeda H, et al. Nature Materials, 2009, 8(6), 494. 33 Wang Z Y, Yang W Z, Liu R, et al. Composites Science and Technology, 2021, 206, 108652. 34 Kil M S, Kim S J, Park H J, et al. ACS Applied Materials & Interfaces, 2022, 14(42), 48072. 35 Shar A, Glass P, Park S H, et al. Advanced Functional Materials, 2023, 33(5), 2211079. 36 Zheng Y J, Li Y L, Dai K, et al. Composites Science and Technology, 2018, 156, 276. 37 Yan M J, Gu L Y, Liu J H, et al. Materials Reports, 2020, 34 (19), 19122 (in Chinese). 闫美佳, 顾灵雅, 刘江浩, 等. 材料导报. 2020, 34 (19), 19122. 38 Zhang Q F. Printing preparation and properties of silicone based stretc-hable conductor. Master’s Thesis, Beijing Institute of Graphic Communication, China, 2023 (in Chinese). 张清芳. 硅胶基可拉伸导体的印刷制备及性能研究. 硕士学位论文, 北京印刷学院, 2023. 39 Zhang Q F, Xin Z Q, Yan M J, et al. Lecture Notes in Electrical Engineering, 2022, 896, 498. 40 Li Y Y, Feng S X, Cao S T, et al. ACS Applied Materials & Interfaces, 2020, 12(45), 50852. 41 Bandodkar A J, Nuñez-Flores R, Jia W, et al. Advanced Materials, 2015, 27(19), 3060. 42 Oh Y, Yoon I S, Lee C, et al. Journal of Materials Chemistry C, 2017, 5(45), 11733.