Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23110023-7    https://doi.org/10.11896/cldb.23110023
  高分子与聚合物基复合材料 |
适用于硅胶基材的可拉伸导电油墨的研究进展
谭彩凤1, 王永生2, 张清芳1, 任铮1, 恩溪弄1, 刘儒平1, 刘婕妤1, 陈艳1, 李葆1, 李路海1, 陈寅杰1, 辛智青1,*
1 北京印刷学院,北京市印刷电子工程技术研究中心,北京 102600
2 贵州省仁怀市申仁包装印务有限责任公司,贵州 仁怀 564507
Research Progress of Stretchable Conductive Inks for Silicone Substrates
TAN Caifeng1, WANG Yongsheng2, ZHANG Qingfang1, REN Zheng1, EN Xinong1, LIU Ruping1, LIU Jieyu1, CHEN Yan1, LI Bao1, LI Luhai1, CHEN Yinjie1, XIN Zhiqing1,*
1 Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China
2 Guizhou Province Renhuai Shenren Packaging & Printing Co., Ltd., Renhuai 564507, Guizhou, China
下载:  全 文 ( PDF ) ( 35268KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 印刷电子正逐渐从柔性电子向可拉伸电子方向发展,开发平面的可拉伸导体对可拉伸电子具有重要的意义。快速制备柔软的但有一定强度的可拉伸导体的方法是将导电材料与弹性聚合物复合形成导电油墨并印刷在弹性基材上。基于硅胶的弹性基材具有良好的生物相容性、热稳定性和化学稳定性,弹性接近皮肤,被用于表皮电子器件、智能软体机器人、可穿戴电子器件等。鉴于硅胶表面非极性的特性,为实现印刷的墨层与硅胶表面之间高的粘附牢度,对印刷油墨提出较高要求。本文重点介绍了两类用于硅胶基材的可拉伸导电油墨且将其进行对比,并分析了印刷后图案的后处理方式对拉伸性的影响。指出采用非极性连结料并选择相容性好的导电组分制备导电油墨是硅胶基材上印刷可拉伸电极的关键;复合不同导电组分、在墨层中引入多孔结构、氙灯烧结有利于提升硅胶基可拉伸电子器件的性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭彩凤
王永生
张清芳
任铮
恩溪弄
刘儒平
刘婕妤
陈艳
李葆
李路海
陈寅杰
辛智青
关键词:  可拉伸导体  印刷技术  硅胶基材  导电油墨    
Abstract: Printed electronics are gradually developing from flexible electronics to stretchable electronics. It is of great significance to develop stretchable conductors with planar shape for stretchable electronics. A facile way to prepare soft but strong stretchable conductors is adopting a printing process on an elastic substrate using hybrid conductive inks containing conductive materials and elastic polymers. Silicone-based elastic substrates have good bio-compatibility, thermal stability, and chemical stability, as well as elasticity close to human skin. Silicone substrate has been used for skin electronic devices, intelligent soft robots, and wearable electronics, etc. For the sake of the non-polar properties of the silicone surface, the bonding strength between the printed ink layer and the silicone surface is the key for the application of stretchable conductive inks. This paper mainly outlines and compares two kinds of stretchable conductive inks for silicone substrates, and clarifies the influence of post-processing on the stretchability of the printed patterns. It points out that the adoption of conductive ink prepared by using a binder with non-polarity and a conductive component well compatible with the binder is the key to acquire stretchable conductors on the silicone substrates; and the hybridization of multiple conductive components, introducing porous structure to the ink layer, and Xenon lamp curing are conducive to the performance improvement of the produced silicone-based stretchable electrodes.
Key words:  stretchable conductor    printing technology    silicone substrate    conductive ink
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TS05  
基金资助: 北京市教委科技一般项目(KM202110015007;KM202310015004);北京印刷学院博士启动项目(27170123043);国家自然科学基金面上项目(62371051);北京印刷学院科研平台建设-北京市印刷电子工程技术研究中心(20190223003);北京市自然科学基金(KZ202110015019)
通讯作者:  *辛智青,北京印刷学院副教授、硕士研究生导师。2001 年7 月本科毕业于北京印刷学院,2013 年7 月在中国科学院化学研究所取得博士学位,到北京印刷学院工作至今。目前主要从事无机导电材料、可拉伸电子器件、新型印刷技术等方面的研究工作。zhiqingxin@bigc.edu.cn   
作者简介:  谭彩凤,2023年7月毕业于曲阜师范大学,获得工学学士学位。现为北京印刷学院轻工技术与工程专业硕士研究生,在辛智青副教授的指导下进行研究。目前主要研究领域为可拉伸导体及应用、可拉伸发光器件。
引用本文:    
谭彩凤, 王永生, 张清芳, 任铮, 恩溪弄, 刘儒平, 刘婕妤, 陈艳, 李葆, 李路海, 陈寅杰, 辛智青. 适用于硅胶基材的可拉伸导电油墨的研究进展[J]. 材料导报, 2025, 39(4): 23110023-7.
TAN Caifeng, WANG Yongsheng, ZHANG Qingfang, REN Zheng, EN Xinong, LIU Ruping, LIU Jieyu, CHEN Yan, LI Bao, LI Luhai, CHEN Yinjie, XIN Zhiqing. Research Progress of Stretchable Conductive Inks for Silicone Substrates. Materials Reports, 2025, 39(4): 23110023-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110023  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23110023
1 Wang Y, Qiu Y, Ameri S K, et al. NPJ Flexible Electronics, 2018, 2(1), 1.
2 Huang G W, Xiao H M, Fu S Y. Scientific Reports, 2015, 5(1), 13971.
3 Yan Z C, Pan T S, Wang D K, et al. ACS Applied Materials Interfaces, 2019, 11(13), 12261.
4 Stauffer F, Thielen M, Sauter C, et al. Advanced Healthcare Materials, 2018, 7(7), 1700994.
5 Chung M, Fortunato G, Radacsi N. Journal of the Royal Society Interface, 2019, 16(159), 20190217.
6 Madhvapathy S R, Ma Y, Patel M, et al. Advanced Functional Materials, 2018, 28(34), 1802083.
7 Su B T, Li J L, Xu H H, et al. Scientia Sinica Informationis, 2022, 52(1), 54 (in Chinese).
苏炳添, 李健良, 徐慧华, 等. 中国科学:信息科学, 2022, 52(1), 54.
8 Abu-Khalaf J M, Al-Ghussain L, Al-Halhouli A. Materials, 2018, 11(12), 2377.
9 Lin Y, Li Q S, Ding C, et al. Nano Research, 2022, 15(5), 4590.
10 Fuard D, Tzvetkova-Chevolleau T, Decossas S, et al. Microelectronic Engineering, 2008, 85(5-6), 1289.
11 Park S I, Ahn J H, Feng X, et al. Advanced Functional Materials, 2008, 18(18), 2673.
12 Moon Y J, Kim C, Choi E, et al. Nanomaterials, 2023, 13(4), 719.
13 Keller K, Grafinger D, Greco F. Frontiers in Materials, 2021, 8, 688133.
14 Won J, Mondal S, Park J, et al. Polymer Composites, 2020, 41(6), 2210.
15 Akter T, Kim W S. ACS Applied Materials Interfaces, 2012, 4(4), 1855.
16 Abu-Khalaf J, Saraireh R, Eisa S, et al. Sensors, 2018, 18(10), 3476.
17 Araki T, Nogi M, Suganuma K, et al. IEEE Electron Device Letters, 2011, 32(10), 1424.
18 Larmagnac A, Eggenberger S, Janossy H, et al. Scientific Reports, 2014, 4(1), 7254.
19 Li Z, Le T R, Wu Z K, et al. Advanced Functional Materials, 2015, 25(3), 464.
20 Matsuhisa N, Kaltenbrunner M, Yokota T, et al. Nature Communications, 2015, 6(1), 7461.
21 Huttunen O H, Happonen T, Hiitola-Keinänen J, et al. Industrial & Engineering Chemistry Research, 2019, 58 (43), 19909.
22 Goh G L, Agarwala S, Yeong W Y. In: Proceedings of the 3rd International Conference on Progress in Additive Manufacturing. Singapore, 2018, pp. 109.
23 Park J, Myung J S, Cho D, et al. Advanced Electronic Materials, 2022, 9(2), 2201021.
24 Kim S H, Jung S, Yoon I S, et al. Advanced Materials, 2018, 30(26), 1800109.
25 Yoon I S, Oh Y, Kim S H, et al. Advanced Materials Technologies, 2019, 4(9), 1900363.
26 Yan H L. The investigation of three-dimensional direct writing to print flexible stretchable electronics. Master’s Thesis, Beijing University of Technology, China, 2017 (in Chinese).
阎海亮. 3D直写式打印柔性可拉伸电子材料的研究. 硕士学位论文, 北京工业大学, 2017.
27 Markvicka E J, Bartlett M D, Huang X, et al. Nature Materials, 2018, 17(7), 618.
28 Ford M J, Ambulo C P, Kent T A, et al. Proceedings of the National Academy of Sciences, 2019, 116(43), 21438.
29 Liu S, Kim S Y, Henry K E, et al. ACS Applied Materials & Interfaces, 2021, 13(24), 28729.
30 Chortos A, Hajiesmaili E, Morales J, et al. Advanced Functional Materials, 2020, 30(1), 1907375.
31 Sekitani T, Noguchi Y, Hata K, et al. Science, 2008, 321(5895), 1468.
32 Sekitani T, Nakajima H, Maeda H, et al. Nature Materials, 2009, 8(6), 494.
33 Wang Z Y, Yang W Z, Liu R, et al. Composites Science and Technology, 2021, 206, 108652.
34 Kil M S, Kim S J, Park H J, et al. ACS Applied Materials & Interfaces, 2022, 14(42), 48072.
35 Shar A, Glass P, Park S H, et al. Advanced Functional Materials, 2023, 33(5), 2211079.
36 Zheng Y J, Li Y L, Dai K, et al. Composites Science and Technology, 2018, 156, 276.
37 Yan M J, Gu L Y, Liu J H, et al. Materials Reports, 2020, 34 (19), 19122 (in Chinese).
闫美佳, 顾灵雅, 刘江浩, 等. 材料导报. 2020, 34 (19), 19122.
38 Zhang Q F. Printing preparation and properties of silicone based stretc-hable conductor. Master’s Thesis, Beijing Institute of Graphic Communication, China, 2023 (in Chinese).
张清芳. 硅胶基可拉伸导体的印刷制备及性能研究. 硕士学位论文, 北京印刷学院, 2023.
39 Zhang Q F, Xin Z Q, Yan M J, et al. Lecture Notes in Electrical Engineering, 2022, 896, 498.
40 Li Y Y, Feng S X, Cao S T, et al. ACS Applied Materials & Interfaces, 2020, 12(45), 50852.
41 Bandodkar A J, Nuñez-Flores R, Jia W, et al. Advanced Materials, 2015, 27(19), 3060.
42 Oh Y, Yoon I S, Lee C, et al. Journal of Materials Chemistry C, 2017, 5(45), 11733.
[1] 闫美佳, 顾灵雅, 刘江浩, 辛智青. 可拉伸导体的印刷制备概述[J]. 材料导报, 2020, 34(19): 19122-19127.
[2] 李恒月, 龚辰迪, 黄可卿, 阳军亮. 基于印刷技术制备钙钛矿太阳电池[J]. 《材料导报》期刊社, 2018, 32(9): 1385-1400.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed