Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24060077-6    https://doi.org/10.11896/cldb.24060077
  无机非金属及其复合材料 |
二氧化硅纳米气凝胶保温材料与高温钠相容性试验研究
张金权1,2, 阮章顺2, 秦博2, 付晓刚2, 龙斌2,*, 周张健3, 恽迪4
1 中国核电工程有限公司,北京 100840
2 中国原子能科学研究院,北京 102413
3 北京科技大学材料科学与工程学院,北京 100083
4 西安交通大学能源与动力工程学院,西安 710049
Investigation on the Compatibility of Nanoporous Aerogel Thermal Insulation Materials in High-temperature Sodium
ZHANG Jinquan1,2, RUAN Zhangshun2, QIN Bo2, FU Xiaogang2, LONG Bin2,*, ZHOU Zhangjian3, YUN Di4
1 China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
2 China Institute of Atomic Energy, Beijing 102413, China
3 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
4 School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 29035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探索新型二氧化硅纳米气凝胶保温材料在钠冷快堆系统领域的应用,研究保温材料的高温性能和防钠火性能,对保证钠冷快堆设备、系统高效安全工作,乃至反应堆的长期稳定运行具有重要意义。为此,本研究开展了快堆用新型二氧化硅纳米气凝胶保温材料与高温钠的相容性试验,采用外观形貌观察、燃烧温度测量、成分分析等分析测试方法对实验过程和结果进行了观察和分析。实验结果显示,二氧化硅纳米气凝胶保温材料在大气中高温烘烤后会释放大量CO、CO2等气体,密闭空间有安全隐患;发生钠泄漏时,在钠没有燃烧的情况下,保温材料内将完全充满钠,其性状发生改变;钠泄漏燃烧后将直接引起保温材料的燃烧甚至爆燃,钠燃烧温度也因此升高,加重钠火事故后果;燃烧后的保温材料发黑、变脆,内部充斥着含钠微粒,保温材料性状完全改变,易引发二次火灾潜在危害。因此,二氧化硅纳米气凝胶保温材料在钠冷快堆系统钠泄漏工况下有较大安全风险。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张金权
阮章顺
秦博
付晓刚
龙斌
周张健
恽迪
关键词:  钠冷快堆  纳米多孔气凝胶  二氧化硅气凝胶  保温材料  钠泄漏  钠火事故  钠气溶胶    
Abstract: It is important to ensure the equipment of sodium-cooled fast reactor operates efficiently and safely, as well as the reactor operates stably. The application of new silica nanoporous aerogel thermal insulation material in sodium-cooled fast reactor system was explored, and the high-temperature performance and sodium fire resistance of the materials were studied. This paper presents the experimental study on the compatibility behavior of a new type of nanoporous aerogel thermal insulation material in high-temperature sodium for sodium-cooled fast reactor. The temperature of the whole combustion process of the insulation material with sodium was recorded and observed, and the composition change of the material before and after combustion was analyzed. The test results show that the nanoporous aerogels insulation materials will release CO, CO2 and other gases after baking at high temperature in air, but the composition remains unchanged. When sodium leakage occurs, if the sodium is not burning, the insulation material is completely filled with sodium, and its properties are changed. However, after the sodium leakage combustion happens, it will directly cause the combustion of thermal insulation materials, and the combustion temperature of sodium increases, the consequences of the accident were aggravated. After the combustion, the thermal insulation materials become black and brittle, and the interior is full of sodium particles, so the properties of thermal insulation materials are completely changed, and the potential hazards were easily caused. There are great safety risks while the silica nanoporous aerogel thermal insulation material is used in sodium-cooled fast reactor system under the condition of sodium leakage.
Key words:  sodium-cooled fast reactor    nanoporous aerogel    silica aerogel    thermal insulation material    sodium leak    sodium fire accident    sodium aerosol
发布日期:  2025-10-27
ZTFLH:  TL43+3  
基金资助: 国防科技工业核材料技术创新中心项目(ICNM-2023-ZH-01)
通讯作者:  *龙斌,博士,中国原子能科学研究院研究员,中国核工业研究生院教授。主要从事核反应堆材料腐蚀性能、核材料微观组织、液态金属工艺技术以及材料的辐照性能等方面的研究。bin.long@hotmail.com   
作者简介:  张金权,硕士,中国核电工程有限公司正高级工程师。主要从事快堆材料与钠相容性研究、铅铋合金实验装置设计研究等,负责国家国防科技工业局核能开发项目、国家能源局重大专项等。
引用本文:    
张金权, 阮章顺, 秦博, 付晓刚, 龙斌, 周张健, 恽迪. 二氧化硅纳米气凝胶保温材料与高温钠相容性试验研究[J]. 材料导报, 2025, 39(20): 24060077-6.
ZHANG Jinquan, RUAN Zhangshun, QIN Bo, FU Xiaogang, LONG Bin, ZHOU Zhangjian, YUN Di. Investigation on the Compatibility of Nanoporous Aerogel Thermal Insulation Materials in High-temperature Sodium. Materials Reports, 2025, 39(20): 24060077-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060077  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24060077
1 Kong Y, Shen X D, Cui S. Materials China, 2016, 35(8), 569(in Chinese).
孔勇, 沈晓冬, 崔升. 中国材料进展, 2016, 35(8), 569.
2 Shen X D, Wu X D, Kong Y, et al. Materials China, 2018, 37(9):671(in Chinese).
沈晓冬, 吴晓栋, 孔勇, 等. 中国材料进展, 2018, 37(9), 671.
3 Wang F, Liu C H, Ding Y D, et al. Equipment Environmental Engineering, 2015, 12(6), 84(in Chinese).
王飞, 刘朝辉, 丁逸栋, 等. 装备环境工程, 2015, 12(6), 84.
4 Mu R, Liu Y X, Ou Z W, et al. Materials Reports, 2024, 38(14), 22110298(in Chinese).
穆锐, 刘元雪, 欧忠文. 材料导报, 2024, 38(14), 22110298.
5 Geng Y M, Zhang F C, Zhao F X. Henan Science and Technology, 2018(4), 84(in Chinese).
耿幼明, 张福臣, 赵方昕. 河南科技, 2018(4), 84.
6 Li S Y, Zhou C. Materials Reports, 2024, 38(19), 23030233(in Chinese).
李思盈, 周超. 材料导报, 2024, 38(19), 23030233.
7 Pan Y L, Cheng X D, Yan M Y. Chemical Industry and Engineering Progress, 2023, 42(1), 297(in Chinese).
潘月磊, 程旭东, 闫明远. 化工进展, 2023, 42(1), 297.
8 Xue W, Li Q, Chen H, et al. Journal of the Chinese Ceramic Society, 2019, 47(9), 1261 (in Chinese).
薛威, 李强, 陈涵, 等. 硅酸盐学报, 2019, 47(9), 1261.
9 Zhou X F, Wang M Y. Architecture Technology, 2017, 48(10), 1114 (in Chinese).
周小芳, 王美月. 建筑技术, 2017, 48(10), 1114.
10 Li X W, Duan Y Y, Wang X D. Journal of Thermal Science and Technology, 2011, 10(3), 189 (in Chinese).
李雄威, 段远源, 王晓东. 热科学与技术, 2011, 10(3), 189.
11 Ni X Y, Zhang Z H, Huang Y D, et al. Atomic Energy Science and Technology, 2004, 38(Sl), 129 (in Chinese).
倪星元, 张志华, 黄耀东, 等. 原子能科学技术, 2004, 38(S1), 129.
12 Xu M. Chinese Journal of Nuclear Science and Engineering, 2011, 31(2), 116 (in Chinese).
徐銤. 核科学与工程, 2011, 31(2), 116.
13 Yu H, Xu M, Jin D G. Chinese Journal of Nuclear Science and Engineering, 2002, 22(1), 7 (in Chinese).
俞宏, 徐銤, 金德圭. 核科学与工程, 2002, 22(1), 7.
14 Ministry of Ecology and Environment of the People’s Republic of China. Ambient air quality standards: GB 3095-2012, China Environmental Press, China, 2012, pp. 3(in Chinese).
环境保护部, 国家质量监督检验检疫总局. 环境空气质量标准: GB 3095-2012, 中国环境科学出版社, 2012, pp. 3.
15 National Health Commission of the People’s Republic of China. Occupational exposure limits for hazardous agents in the workplace-Part 1: Chemical hazardous agents: GBZ 2. 1-2019, Standards Press of China, China, 2019, pp. 10(in Chinese).
国家卫生健康委员会. 工作场所有害因素职业接触限值 第1部分:化学有害因素: GBZ2. 1-2019, 中国标准出版社, 2019, pp. 10.
16 Hong S Z. Fundamentals of sodium technology, China Atomic Energy Press, China, 2011, pp. 4 (in Chinese).
洪顺章. 钠工艺基础, 中国原子能出版传媒有限公司, 2011, pp. 4.
[1] 李祥文, 李昆锋, 武晨浩, 费志方, 张震, 孙文彩, 杨自春. 不同碱性催化剂对疏水SiO2气凝胶性能的影响[J]. 材料导报, 2025, 39(17): 24080159-5.
[2] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[3] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[4] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[5] 苏英杰, 高丽娟, 卢振杰, 杨广, 程俊霞, 赵雪飞. 废弃酚醛树脂保温材料基电极材料多孔炭的制备及构效关系[J]. 材料导报, 2022, 36(12): 21030309-7.
[6] 贺诚, 李庆超, 周涵, 李东旭. 石膏基地面轻质保温层材料的制备及性能研究[J]. 材料导报, 2021, 35(z2): 236-240.
[7] 应宗耀, 郑煜铭, 邵再东, 程璇. 胺基改性二氧化硅气凝胶的制备及对刚果红的吸附性能[J]. 材料导报, 2021, 35(20): 20005-20010.
[8] 张金权, 许咏丽, 谢淳, 付晓刚, 龙斌. Fe-Ni磁性温度感知合金与高温钠的相容性研究[J]. 材料导报, 2020, 34(Z2): 334-337.
[9] 张 震,冯军宗,姜勇刚,刘 平,张秋华,卫荣辉,陈 翔,冯 坚. 利用离子液体制备无机气凝胶的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1469-1476.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed