Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23100091-6    https://doi.org/10.11896/cldb.23100091
  金属与金属基复合材料 |
稀土Ce对GCr15轴承钢中液析碳化物的影响
陈楠1,2, 汪宙1,3,*, 陈爽1, 李继文1,2
1 河南科技大学材料科学与工程学院,河南 洛阳 471023
2 金属材料磨损控制与成型技术国家地方联合工程研究中心,河南 洛阳 471023
3 有色金属新材料与先进加工技术省部共建协同创新中心,河南 洛阳 471023
Effect of Rare Earth Ce on Primary Carbides in GCr15 Bearing Steel
CHEN Nan1,2, WANG Zhou1,3,*, CHEN Shuang1, LI Jiwen1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan, China
2 National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Luoyang 471023, Henan, China
3 Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan, China
下载:  全 文 ( PDF ) ( 7472KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国高端装备制造业的飞速发展,高端轴承钢材料的需求与研发日益迫切。目前GCr15轴承钢是应用最为广泛的高碳铬轴承钢之一,随着轴承钢洁净度的不断提高,液析碳化物对轴承钢性能的影响及其调控显得愈发重要。因此,本工作通过向GCr15轴承钢中添加稀土Ce,研究其对轴承钢液析碳化物的影响及细质化调控机理。采用Thermo-Calc软件对GCr15轴承钢凝固过程中液析碳化物的析出行为进行热力学分析,利用XRD、OLS5100激光共聚焦显微镜、SEM-EDS等对GCr15轴承钢中液析碳化物的组成及微观形貌进行分析。结果表明,GCr15轴承钢中的液析碳化物类型主要为M3C、M7C3和M3C2;适量添加稀土Ce可以明显降低液析碳化物数量和缩小尺寸,当GCr15轴承钢中稀土Ce含量为320×10-6时,液析碳化物面积占比和最大尺寸分别降低了3.22%和16.21 μm。此外,随着稀土Ce含量的增加,液析碳化物的形核核心由MnS和Al2O3夹杂转变为尺寸较小的Ce-O-S稀土化合物,从而达到细质化调控液析碳化物的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈楠
汪宙
陈爽
李继文
关键词:  GCr15轴承钢  液析碳化物  稀土Ce  微观形貌    
Abstract: With therapid development of high-end equipment manufacturing industry in China, the demand and research of high-quality bearing steel is increasingly urgent. Currently, GCr15 bearing steel is one of the most widely used high-carbon chromium bearing steels, the influence of primary carbides on bearing steel and control of primary carbides become more and more important with the continuous improvement of the cleanliness for bearing steel. Therefore, by adding rare earth Ce to GCr15 bearing steel, the effect of rare earth Ce on primary carbides in bearing steel was studied in this work. Thermo-Calc software was applied to thermodynamically analyze the precipitation behavior of primary carbides during solidification of GCr15 bearing steel. XRD, OLS5100 Laser Scanning Confocal Microscope and SEM-EDS were used to analyze the composition and microstructure of primary carbides in GCr15 bearing steel. The results showed that the typical primary carbides in GCr15 bearing steel were M3C, M7C3 and M3C2. The quantity and size of primary carbides could be obviously reduced with reasonable addition of rare earth Ce in GCr15 bearing steel. Especially when the content of rare earth Ce was 320×10-6, the area ratio and maximum size of primary carbides was reduced by 3.22% and 16.21 μm respectively. Moreover, with the increasing addition of rare earth Ce in GCr15 bearing steel, the nucleation core of primary carbides changed from MnS and Al2O3 to Ce-O-S with smaller size, which led to the refinement of primary carbides.
Key words:  GCr15 bearing steel    primary carbides    rare earth Ce    microstructure
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TG142.1  
基金资助: 河南省科技攻关项目(222102230033);国家自然科学基金(52204343)
通讯作者:  *汪宙,博士,河南科技大学材料科学与工程学院副教授、硕士研究生导师。主要从事高性能轴承钢夹杂物与碳化物控制技术研究、高性能钢铁冶金过程模拟与工艺优化等方面的研究。wangzhou29@163.com   
作者简介:  陈楠,硕士研究生,主要研究领域为GCr15轴承钢组织与性能调控。
引用本文:    
陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
CHEN Nan, WANG Zhou, CHEN Shuang, LI Jiwen. Effect of Rare Earth Ce on Primary Carbides in GCr15 Bearing Steel. Materials Reports, 2025, 39(2): 23100091-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100091  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23100091
1 Cao W Q, Yu F, Wang C Y, et al. Special Steel, 2021, 42(1), 1(in Chinese).
曹文全, 俞峰, 王存宇, 等. 特殊钢, 2021, 42(1), 1.
2 Yu F, Chen X P, Xu H F, et al. Acta Metallurgica Sinica, 2020, 56(4), 513(in Chinese).
俞峰, 陈兴品, 徐海峰, 等.金属学报, 2020, 56(4), 513.
3 Zhang C L, Zhu Y C, Jiang B. Materials Reports, 2023, 37(6), 138(in Chinese).
张朝磊, 朱禹承, 蒋波. 材料导报, 2023, 37(6), 138.
4 Wang K, Hu F, Zhou W, et al.China Metallurgy, 2020, 30(9), 119(in Chinese).
王坤, 胡锋, 周雯, 等. 中国冶金, 2020, 30(9), 119.
5 Zhong S S, Wang C S.Bearing steel, Metallurgical Industry Press, China, 2000, pp. 7(in Chinese).
钟顺思, 王昌生.轴承钢, 冶金工业出版社, 2000, pp. 7.
6 Webler B A, Pistorius P C. Metallurgical and Materials Transactions B. 2020, 51(6), 2437.
7 Liu Y, Yin Q, Lei F, et al. China Metallurgy, 2020, 30(9), 37(in Chinese).
刘烨, 尹青, 李锋, 等.中国冶金, 2020, 30(9), 37.
8 Wang L, Liu L, Yao T L, et al.Steelmaking, 2018, 34(3), 67(in Chinese).
王乐, 刘浏, 姚同路, 等.炼钢, 2018, 34(3), 67.
9 Ozaki K. Denki-Seiko, 2005, 76(4), 249.
10 Filipovic M, Romhanji E, Kamberovic Z. ISIJ International, 2012, 52(12), 2200.
11 Li Z K, Lei J Z, Xu H F, et al. Journal of Iron and Steel Research, 2016, 28(3), 1(in Chinese).
李昭昆, 雷建中, 徐海峰, 等. 钢铁研究学报, 2016, 28(3), 1.
12 Ning Y L. Reasearch on Microstructure Evolution and Controlling of Network Carbides of GCr15 Bearing Steel. Master's thesis, Jiangsu University, China, 2019 (in Chinese).
宁玉亮. GCr15轴承钢的组织演变及网状碳化物的控制研究.硕士学位论文,江苏大学, 2019.
13 Li S S, Chen Y, Gong T Z, et al. Acta Metallurgica Sinica, 2022, 58(8), 1024(in Chinese).
李闪闪, 陈云, 巩桐兆, 等.金属学报, 2022, 58(8), 1024.
14 Guo J, Yang M S, Lu D H, et al. Journal of Materials Engineering, 2019, 47(7), 134(in Chinese).
郭军, 杨卯生, 卢德宏, 等. 材料工程, 2019, 47(7), 134.
15 Guo J, Zhao A M, Yang M S. International Journal of Fatigue, 2023, 174, 107587.
16 Yang L Q, Xue W H, Gao S Y, et al. International Journal of Fatigue, 2023, 177, 107940.
17 Mao M T, Guo H J, Sun X L, et al.Chinese Journal of Engineering, 2017, 39(8), 1174(in Chinese).
毛明涛, 郭汉杰, 孙晓林, 等. 工程科学学报, 2017, 39(8), 1174.
18 Yang C Y, Zhuang Q, Liu H, et al. China Metallurgy, 2020, 30(9), 45(in Chinese).
杨超云, 庄权, 刘航, 等. 中国冶金, 2020, 30(9), 45.
19 Shi X X, Ren H P, Li X, et al. Chinese Rare Earths, 2021, 42(3), 94(in Chinese).
石晓霞, 任慧平, 李晓, 等. 稀土, 2021, 42(3), 94.
20 Li Y, Du P F, Jiang Z H, et al. Iron & Steel, 2018, 53(10), 32(in Chinese).
李阳, 杜鹏飞, 姜周华, 等. 钢铁, 2018, 53(10), 32.
21 Wang H, Bao Y P, Zhao M, et al. International Journal of Minerals, Metallurgy and Materials, 2019, 26(11), 1372.
22 Huang Y, Cheng G, Zhu M, et al. Metallurgical and Materials Transactions B, 2021, 52(2), 700.
23 Chang L Z, Gao G, Shi X F, et al. The Chinese Journal of Process Engineering, 2019, 19(2), 362(in Chinese).
常立忠, 高岗, 施晓芳, 等. 过程工程学报, 2019, 19(2), 362.
[1] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[2] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[3] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[4] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[5] 雷经发, 沈强, 刘涛, 孙虹, 尹志强. 聚氯乙烯/热塑性聚氨酯共混合金的静动态力学性能及微观结构分析[J]. 材料导报, 2024, 38(19): 23010114-6.
[6] 谢金梦, 逄显娟, 赵若凡, 刘亚婷, 黄素玲, 王帅, 张永振. 不同摩擦配副对PEEK及CF/PEEK复合材料摩擦学性能的影响[J]. 材料导报, 2024, 38(16): 23030275-9.
[7] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[8] 李志尧, 文鑫, 杨晨光, 王栋. 表面具有交联结构的UHMWPE纤维的制备及抗蠕变性能研究[J]. 材料导报, 2023, 37(21): 22040008-6.
[9] 闵军雄, 张敏男, 戴光泽, 赵君文. 层流等离子体淬火对GCr15轴承钢的滚动接触疲劳及损伤性能的影响[J]. 材料导报, 2023, 37(2): 21060076-7.
[10] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[11] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[12] 王顺平, 李春燕, 李金玲, 王海博, 寇生中. 块体非晶合金的低温性能研究进展[J]. 材料导报, 2022, 36(13): 20100255-8.
[13] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[14] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[15] 王健, 杜国正, 张永, 武政, 高靖, 苏力德. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 4177-4180.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed