Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24090017-7    https://doi.org/10.11896/cldb.24090017
  无机非金属及其复合材料 |
纳米颗粒溶出钙钛矿电催化剂的研究进展
邓雨凤, 刘鹏*, 刘子玉, 杨现锋
长沙理工大学材料科学与工程学院,长沙 410114
Advances in Nanoparticles-exsolved Perovskite Electrocatalysts
DENG Yufeng, LIU Peng*, LIU Ziyu, YANG Xianfeng
School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 29259KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米颗粒溶出型催化剂克服了传统的负载型催化剂存在的活性位点难调控、易团聚等缺点,凭借催化活性与耐久性的双重优势成为新能源材料领域的研究热点。本文介绍了纳米颗粒溶出钙钛矿电催化剂的研究背景,阐述了纳米颗粒的溶出与调控机理,综述了此类催化剂的制备技术及在能源与环境领域的应用进展,提出了需要解决的问题,并展望了未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓雨凤
刘鹏
刘子玉
杨现锋
关键词:  钙钛矿  溶出  纳米颗粒  电催化剂    
Abstract: Nanoparticles-exsolved catalysts can overcome the shortcomings of traditional loaded catalysts which are subject to the uncontrollability and agglomeration of the active sites, and become a research hotspot in the field of new energy materials by virtue of the dual advantages of catalytic activity and durability. In this paper, we introduce the research background of nanoparticles-exsolved perovskite electrocatalysts, describe the nanoparticle exsolution and regulation mechanism, review the commonly used preparation techniques of the catalysts as well as their application progress in the fields of energy and environment, summarize the problems to be solved and forecast their future development prospects.
Key words:  perovskite    exsolution    nanoparticle    electrocatalyst
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TM911.4  
基金资助: 国家自然科学基金(52172063;52402142);湖南省自然科学基金(2023JJ30030);长沙市自然科学基金(kq2208223);湖南省研究生科研创新项目(CX20230942)
通讯作者:  *刘鹏,博士,长沙理工大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事电化学储能与催化材料、先进陶瓷绿色制造等方面的研究。liupengmse@csust.edu.cn   
作者简介:  邓雨凤,长沙理工大学材料科学与工程学院硕士研究生,在刘鹏副教授的指导下进行研究。目前主要研究领域为固体氧化物燃料电池。
引用本文:    
邓雨凤, 刘鹏, 刘子玉, 杨现锋. 纳米颗粒溶出钙钛矿电催化剂的研究进展[J]. 材料导报, 2025, 39(19): 24090017-7.
DENG Yufeng, LIU Peng, LIU Ziyu, YANG Xianfeng. Advances in Nanoparticles-exsolved Perovskite Electrocatalysts. Materials Reports, 2025, 39(19): 24090017-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090017  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24090017
1 Periyasamy T, Asrafali S P, Lee J. Processes, 2024, 12, 2019.
2 Huang M Q, Du Y Q, Jiang H, et al. Solid State Ionics, 2023, 402, 116357.
3 Kasamatsu Y, Toyomura K, Haba H, et al. Nature Chemistry, 2021, 13, 226.
4 Sun Z, Hao C C, Toan S, et al. Journal of Materials Chemistry A, 2023, 11, 17961.
5 López-García A, Carrillo A J, Jiménez C E, et al. Journal of Materials Chemistry A, 2024, 12, 22609.
6 Xu M, Jeon Y, Naden A, et al. Nature Communications, 2024, 15, 4007.
7 Jeong H, Kim Y H, Won B R, et al. Chemistry of Materials, 2023, 35, 3745.
8 Kwon O, Joo S, Choi S, et al. Journal of Physics:Energy, 2020, 2, 032001.
9 Kim Y H, Jeong H, Won B R, et al. Nano-Micro Letters, 2024, 16, 33.
10 Kim Y H, Jeong H, Won B R, et al. Advanced Materials, 2023, 35, 2208984.
11 Yang Y L, Li J H, Sun Y F. Chemical Engineering Journal, 2022, 440, 135868.
12 Ding P P, Li W L, Zhao H W, et al. Journal of Physics:Materials, 2021, 4, 022002.
13 Neagu D, Oh T S, Miller D N, et al. Nature Communications, 2015, 6, 8120.
14 Kim K, Koo B, Jo Y R, et al. Energy & Environmental Science, 2020, 13, 3404.
15 Kim J K, Jo Y R, Kim S, et al. ACS Applied Materials & Interfaces, 2020, 12, 24039.
16 Neagu D, Kyriakou V, Roiban I L, et al. ACS Nano, 2019, 13, 12996.
17 Carrillo A J, Serra J M. Catalysts, 2021, 11, 741.
18 Ruh T, Berkovec D, Schrenk F, et al. Chemical Communications, 2023, 59, 3948.
19 Carrillo A J, López-García A, Delgado-Galicia B, et al. Chemical Communications, 2024, 60, 7987.
20 Mei J, Liao T, Sun Z. Materials Today Energy, 2023, 31, 101216.
21 Luo Y, Zhang D, Liu T, et al. Advanced Functional Materials, 2024, 34, 2403922.
22 Sun Z, Fan W W, Bai Y. Advanced Science, 2022, 9, 2200250.
23 López-García A, Remiro-Buenamañana S, Neagu D, et al. Small, DOI:10.1002/smll.202403544.
24 Myung J H, Neagu D, Miller D N, et al. Nature, 2016, 537, 528.
25 Hu X, Qi J A, Fu X, et al. Journal of Materials Chemistry A, 2024, 12, 4019.
26 Lu Y, Huang Y W, Xu Z H, et al. ACS Nano, 2023, 17, 14005.
27 Kim J, Gunduz S, Co A C, et al. Applied Catalysis B:Environmental and Energy, 2024, 344, 123603.
28 Xu M, Cao R, Wu S T, et al. Journal of Materials Chemistry A, 2023, 11, 13007.
29 Joo S, Seong A, Kwon O, et al. Science Advances, 2020, 6, eabb1573.
30 Joo S, Kim K, Kwon O, et al. Angewandte Chemie International Edition, 2021, 60, 15912.
31 Kujawska K, Koliński W, Bochentyn B. Fuels, 2024, 5, 564.
32 Zhang B W, Zhu M N, Gao M R, et al. Nature Communications, 2022, 13, 4618.
33 Kyriakou V, Sharma R K, Neagu D, et al. Small Methods, 2021, 5, 2100868.
34 Khalid H, Haq A U, Alessi B, et al. Advanced Energy Materials, 2022, 12, 2201131.
35 López-García A, Domínguez-Saldaña A, Carrillo A J, et al. ACS Nano, 2023, 17, 23955.
36 Lu Y, Shen Q Y, Yu Q N, et al. The Journal of Physical Chemistry C, 2016, 120, 28712.
37 Chen Z, Hua B, Zhang X, et al. Cell Reports Physical Science, 2020, 1, 100243.
38 Hu X, Qi J A, Qiao S F, et al. Nanotechnology, 2023, 34, 105709.
39 Wang Y H, Cheng X, Zhang K, et al. Materials Advances, 2022, 3, 7384.
40 Wang J Y, Woller K B, Kumar A, et al. Energy & Environmental Science, 2023, 16, 5464.
41 Kousi K, Tang C Y, Metcalfe I S, et al. Small, 2021, 17, 2006479.
42 Steiger P, Burnat D, Madi H, et al. Chemistry of Materials, 2019, 31, 748.
43 Kim K J, Rath M K, Kwak H H, et al. ACS Catalysis, 2019, 9, 1172.
44 Kim J H, Kim J K, Seo H G, et al. Advanced Functional Materials, 2020, 30, 2001326.
45 Yu X D, Wang Z H, Ren R Z, et al. ACS Energy Letters, 2022, 7, 2961.
46 Qin M X, Xiao Y, Yang H Y, et al. Applied Catalysis B:Environmental and Energy, 2021, 299, 120613.
47 Du Y Q, Zhao L Y, Xiao Y Z, et al. Journal of Materials Chemistry A, 2024, 12, 28911.
48 Du Y Q, Ling H, Zhao L Y, et al. Journal of Power Sources, 2024, 607, 234608.
49 Han F Z, Wang Z X, Zhang S L, et al. Applied Catalysis B:Environment and Energy, 2025, 361, 124676.
50 Jo S, Kim Y H, Jeong H, et al. Applied Energy, 2022, 323, 119615.
51 Kyriakou V, Neagu D, Zafeiropoulos G, et al. ACS Catalysis, 2020, 10, 1278.
52 Guo Y, Wang S, Li R T, et al. Joule, 2024, 8, 2016.
53 Li W Y, Zhu Y M, Guo W, et al. Journal of Chemical Sciences, 2022, 134, 38.
54 Zuo S S, Liao Y, Wang C C, et al. Small, 2024, 20, 2308867.
55 Tang L N, Chen Z, Zuo F, et al. Chemical Engineering Journal, 2020, 401, 126082.
56 Yu H R, Wang Y H, Tao X Y N, et al. ACS Applied Materials & Interfaces, 2024, 16, 17483.
57 Vecino-Mantilla S, Simon P, Huvé M, et al. International Journal of Hydrogen Energy, 2020, 45, 27145.
58 Zhang W, Wei J L, Zhou Y X, et al. Chemical Engineering Journal, 2024, 498, 155502.
59 Ou X, Liu Q B, Wei F F, et al. Chemical Engineering Journal, 2023, 451, 139037.
60 Zhang Y Q, Tao H B, Chen Z, et al. Journal of Materials Chemistry A, 2019, 7, 26607.
61 Arafat Y, Azhar M R, Zhong Y J, et al. Journal of Materials Chemistry A, 2023, 11, 12856.
62 Cong Y G, Geng Z B, Zhu Q, et al. Angewandte Chemie International Edition, 2021, 133, 23568.
[1] 陈旭, 廖静, 谭理, 李海进. 金属卤化物钙钛矿材料自掺杂研究进展[J]. 材料导报, 2025, 39(7): 24020097-9.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[4] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[5] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[6] 张悦, 管千慧, 周政, 陈全, 吴敏, 易鹏. 纳米颗粒和微生物相互作用过程中生物膜的形成机制与效应[J]. 材料导报, 2025, 39(12): 24050009-9.
[7] 党婵娟, 沈霞, 张保龙, 郭鹏飞. 无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质[J]. 材料导报, 2025, 39(11): 24040008-5.
[8] 孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
[9] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[10] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[11] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[12] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[13] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[14] 陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
[15] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed