Abstract: Nanoparticles-exsolved catalysts can overcome the shortcomings of traditional loaded catalysts which are subject to the uncontrollability and agglomeration of the active sites, and become a research hotspot in the field of new energy materials by virtue of the dual advantages of catalytic activity and durability. In this paper, we introduce the research background of nanoparticles-exsolved perovskite electrocatalysts, describe the nanoparticle exsolution and regulation mechanism, review the commonly used preparation techniques of the catalysts as well as their application progress in the fields of energy and environment, summarize the problems to be solved and forecast their future development prospects.
1 Periyasamy T, Asrafali S P, Lee J. Processes, 2024, 12, 2019. 2 Huang M Q, Du Y Q, Jiang H, et al. Solid State Ionics, 2023, 402, 116357. 3 Kasamatsu Y, Toyomura K, Haba H, et al. Nature Chemistry, 2021, 13, 226. 4 Sun Z, Hao C C, Toan S, et al. Journal of Materials Chemistry A, 2023, 11, 17961. 5 López-García A, Carrillo A J, Jiménez C E, et al. Journal of Materials Chemistry A, 2024, 12, 22609. 6 Xu M, Jeon Y, Naden A, et al. Nature Communications, 2024, 15, 4007. 7 Jeong H, Kim Y H, Won B R, et al. Chemistry of Materials, 2023, 35, 3745. 8 Kwon O, Joo S, Choi S, et al. Journal of Physics:Energy, 2020, 2, 032001. 9 Kim Y H, Jeong H, Won B R, et al. Nano-Micro Letters, 2024, 16, 33. 10 Kim Y H, Jeong H, Won B R, et al. Advanced Materials, 2023, 35, 2208984. 11 Yang Y L, Li J H, Sun Y F. Chemical Engineering Journal, 2022, 440, 135868. 12 Ding P P, Li W L, Zhao H W, et al. Journal of Physics:Materials, 2021, 4, 022002. 13 Neagu D, Oh T S, Miller D N, et al. Nature Communications, 2015, 6, 8120. 14 Kim K, Koo B, Jo Y R, et al. Energy & Environmental Science, 2020, 13, 3404. 15 Kim J K, Jo Y R, Kim S, et al. ACS Applied Materials & Interfaces, 2020, 12, 24039. 16 Neagu D, Kyriakou V, Roiban I L, et al. ACS Nano, 2019, 13, 12996. 17 Carrillo A J, Serra J M. Catalysts, 2021, 11, 741. 18 Ruh T, Berkovec D, Schrenk F, et al. Chemical Communications, 2023, 59, 3948. 19 Carrillo A J, López-García A, Delgado-Galicia B, et al. Chemical Communications, 2024, 60, 7987. 20 Mei J, Liao T, Sun Z. Materials Today Energy, 2023, 31, 101216. 21 Luo Y, Zhang D, Liu T, et al. Advanced Functional Materials, 2024, 34, 2403922. 22 Sun Z, Fan W W, Bai Y. Advanced Science, 2022, 9, 2200250. 23 López-García A, Remiro-Buenamañana S, Neagu D, et al. Small, DOI:10.1002/smll.202403544. 24 Myung J H, Neagu D, Miller D N, et al. Nature, 2016, 537, 528. 25 Hu X, Qi J A, Fu X, et al. Journal of Materials Chemistry A, 2024, 12, 4019. 26 Lu Y, Huang Y W, Xu Z H, et al. ACS Nano, 2023, 17, 14005. 27 Kim J, Gunduz S, Co A C, et al. Applied Catalysis B:Environmental and Energy, 2024, 344, 123603. 28 Xu M, Cao R, Wu S T, et al. Journal of Materials Chemistry A, 2023, 11, 13007. 29 Joo S, Seong A, Kwon O, et al. Science Advances, 2020, 6, eabb1573. 30 Joo S, Kim K, Kwon O, et al. Angewandte Chemie International Edition, 2021, 60, 15912. 31 Kujawska K, Koliński W, Bochentyn B. Fuels, 2024, 5, 564. 32 Zhang B W, Zhu M N, Gao M R, et al. Nature Communications, 2022, 13, 4618. 33 Kyriakou V, Sharma R K, Neagu D, et al. Small Methods, 2021, 5, 2100868. 34 Khalid H, Haq A U, Alessi B, et al. Advanced Energy Materials, 2022, 12, 2201131. 35 López-García A, Domínguez-Saldaña A, Carrillo A J, et al. ACS Nano, 2023, 17, 23955. 36 Lu Y, Shen Q Y, Yu Q N, et al. The Journal of Physical Chemistry C, 2016, 120, 28712. 37 Chen Z, Hua B, Zhang X, et al. Cell Reports Physical Science, 2020, 1, 100243. 38 Hu X, Qi J A, Qiao S F, et al. Nanotechnology, 2023, 34, 105709. 39 Wang Y H, Cheng X, Zhang K, et al. Materials Advances, 2022, 3, 7384. 40 Wang J Y, Woller K B, Kumar A, et al. Energy & Environmental Science, 2023, 16, 5464. 41 Kousi K, Tang C Y, Metcalfe I S, et al. Small, 2021, 17, 2006479. 42 Steiger P, Burnat D, Madi H, et al. Chemistry of Materials, 2019, 31, 748. 43 Kim K J, Rath M K, Kwak H H, et al. ACS Catalysis, 2019, 9, 1172. 44 Kim J H, Kim J K, Seo H G, et al. Advanced Functional Materials, 2020, 30, 2001326. 45 Yu X D, Wang Z H, Ren R Z, et al. ACS Energy Letters, 2022, 7, 2961. 46 Qin M X, Xiao Y, Yang H Y, et al. Applied Catalysis B:Environmental and Energy, 2021, 299, 120613. 47 Du Y Q, Zhao L Y, Xiao Y Z, et al. Journal of Materials Chemistry A, 2024, 12, 28911. 48 Du Y Q, Ling H, Zhao L Y, et al. Journal of Power Sources, 2024, 607, 234608. 49 Han F Z, Wang Z X, Zhang S L, et al. Applied Catalysis B:Environment and Energy, 2025, 361, 124676. 50 Jo S, Kim Y H, Jeong H, et al. Applied Energy, 2022, 323, 119615. 51 Kyriakou V, Neagu D, Zafeiropoulos G, et al. ACS Catalysis, 2020, 10, 1278. 52 Guo Y, Wang S, Li R T, et al. Joule, 2024, 8, 2016. 53 Li W Y, Zhu Y M, Guo W, et al. Journal of Chemical Sciences, 2022, 134, 38. 54 Zuo S S, Liao Y, Wang C C, et al. Small, 2024, 20, 2308867. 55 Tang L N, Chen Z, Zuo F, et al. Chemical Engineering Journal, 2020, 401, 126082. 56 Yu H R, Wang Y H, Tao X Y N, et al. ACS Applied Materials & Interfaces, 2024, 16, 17483. 57 Vecino-Mantilla S, Simon P, Huvé M, et al. International Journal of Hydrogen Energy, 2020, 45, 27145. 58 Zhang W, Wei J L, Zhou Y X, et al. Chemical Engineering Journal, 2024, 498, 155502. 59 Ou X, Liu Q B, Wei F F, et al. Chemical Engineering Journal, 2023, 451, 139037. 60 Zhang Y Q, Tao H B, Chen Z, et al. Journal of Materials Chemistry A, 2019, 7, 26607. 61 Arafat Y, Azhar M R, Zhong Y J, et al. Journal of Materials Chemistry A, 2023, 11, 12856. 62 Cong Y G, Geng Z B, Zhu Q, et al. Angewandte Chemie International Edition, 2021, 133, 23568.