Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080109-5    https://doi.org/10.11896/cldb.24080109
  无机非金属及其复合材料 |
高温退火增强碳纳米管的生物电化学性能研究
岳庆1,2, 李文全1,*, 盛鸿伟2,*, 兰伟2,*
1 青海师范大学物理与电子信息工程学院,西宁 810005
2 兰州大学物理科学与技术学院,兰州 730000
Bio-electrochemical Properties of Carbon Nanotubes Enhanced by High-temperature Annealing
YUE Qing1,2, LI Wenquan1,*, SHENG Hongwei2,*, LAN Wei2,*
1 School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810005, China
2 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 12076KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以生物电催化为基础的各种氧化还原酶常用于开发生物电子器件,如生物燃料电池和生物传感器。然而,酶-电极界面电子转移效率低下是限制酶生物电催化系统实际应用的主要瓶颈问题。基于此,选择使用最为广泛的葡萄糖氧化酶为模型酶,以碳纳米管(CNTs) 作为电子转移介质和酶固定载体,探究了高温退火对葡萄糖氧化酶 (GOx) 电子转移和催化活性的影响,重点研究了高温退火处理对CNTs的微观形貌、晶体结构和石墨化程度的影响,以及结构与生物电化学性能之间的构效关系。研究结果表明,退火提高了CNTs的石墨化程度,增强了电子转移能力和催化活性,与未退火的CNTs相比,GOx的活性中心与退火后CNTs的相互作用明显提升。本研究对构筑基于纳米碳材料的高性能酶生物电极具有重要的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳庆
李文全
盛鸿伟
兰伟
关键词:  碳纳米管  高温退火  葡萄糖氧化酶  生物电化学    
Abstract: Oxidoreductase enzymes based on bioelectric catalysis are commonly used to construct bioelectronic devices, such as biofuel cells and biosensors. However, the low efficiency of electron transfer at the enzyme-electrode interface is the main bottleneck that limits the practical application of enzyme bioelectric catalytic systems. Based on this, this work selected the most widely used glucose oxidase (GOx) as the model enzyme, and carbon nanotubes (CNTs) as the electron transfer medium and enzyme immobilization carrier, to investigate the effect of high-temperature annealing on the electron transfer and catalytic activity of GOx. The effects of high-temperature annealing on the microscopic morphology, crystal structure, and graphitization degree of CNTs, as well as the structural-functional relationships between the structure and bio-electrochemical properties were studied. The results showed that annealing treatment improved the graphitization degree of CNTs, enhanced the electron transfer ability and catalyticactivity, and the interaction between the active center of GOx and the annealed CNTs was significantly improved compared to the unannealed CNTs. This study has important guiding significance for the construction of high-performance enzyme bioelectrodes based on nanocarbon materials.
Key words:  carbon nanotubes    high temperature annealing    glucose oxidase    bio-electrochemistry
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  O646  
基金资助: 青海省应用基础研究项目 (2022-ZJ-703);国家自然科学基金 (62404088;61874166);甘肃省自然科学基金 (24JRRA818;24JRRA395);兰州大学青年研究员-科研启动经费
通讯作者:  *李文全,硕士,青海师范大学物理与电子信息工程学院副教授。主要从事信号处理等方面的研究。liwenquan@qhnu.edu.cn;
盛鸿伟,博士,兰州大学物理科学与技术学院青年研究员、硕士研究生导师。主要从事生物可降解电子材料与器件方面的研究。shenghw@lzu.edu.cn;
兰伟,博士,兰州大学物理科学与技术学院教授、博士研究生导师。主要从事柔性电子学领域的应用基础研究。lanw@lzu.edu.cn   
作者简介:  岳庆,兰州大学物理科学与技术学院凝聚态物理专业硕士研究生,在兰伟教授和盛鸿伟青年研究员的指导下进行研究。研究方向为生物电化学、面向体液监测的自供能传感器。
引用本文:    
岳庆, 李文全, 盛鸿伟, 兰伟. 高温退火增强碳纳米管的生物电化学性能研究[J]. 材料导报, 2025, 39(18): 24080109-5.
YUE Qing, LI Wenquan, SHENG Hongwei, LAN Wei. Bio-electrochemical Properties of Carbon Nanotubes Enhanced by High-temperature Annealing. Materials Reports, 2025, 39(18): 24080109-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080109  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080109
1 Bartlett P N. Bioelectrochemistry:fundamentals, experimental techniques and applications, John Wiley & Sons, 2008, pp. 200.
2 Xiao X. eScience, 2022, 2(1), 1.
3 Miao K P, Yan L, Ma P C, et al. Chinese Journal of Power Sources, 2021, 45(3), 406(in Chinese).
苗昆鹏, 闫龙, 马鹏程, 等. 电源技术, 2021, 45(3), 406.
4 Sheng H, Zhang X, Liang J, et al. Advanced Healthcare Materials, 2021, 10(17), 2100199.
5 Sheng H, Ma Y, Zhang H, et al. Advanced Materials Technologies, 2024, 9(21), 2301796.
6 Guan S, Wang J, Yang Y, et al. Advanced Functional Materials, 2023, 33(33), 2303134.
7 Qian Z, Yang Y, Wang L, et al. Angewandte Chemie-International Edition, 2023, 62(28), e202303268.
8 Cai Y, Liang B, Chen S, et al. Biosensors & Bioelectronics, 2020, 165, 112408.
9 Lv J, Yin L, Chen X, et al. Advanced Functional Materials, 2021, 31(38), 2102915.
10 Guan S, Yang Y, Wang Y, et al. Advanced Materials, 2024, 36(1), 2305854.
11 Lee H, Hong Y J, Baik S, et al. Advanced Healthcare Materials, 2018, 7(8), 1701150.
12 Li Z, Yun J, Li X, et al. Advanced Functional Materials, 2023, 33(42), 2304647.
13 Yang G, Tang Y, Lin T, et al. Nano Energy, 2022, 93, 106817.
14 Chen X, Yin L, Lv J, et al. Advanced Functional Materials, 2019, 29(46), 1905785.
15 Maghraby Y R, El-Shabasy R M, Ibrahim A H, et al. ACS Omega, 2023, 8(6), 5184.
16 Lu Y L, Mu X W, Huang L S, et al. Materials Reports, 2022, 36(6), 20070278(in Chinese).
鲁猷栾, 穆新伟, 黄乐舒, 等. 材料导报, 2022, 36(6), 20070278.
17 Zhu C, Yang G, Li H, et al. Analytical Chemistry, 2015, 87(1), 230.
18 Xue T, Peng B, Xue M, et al. Nature Communications, 2014, 5, 3200.
19 Tran T T, Nine M J, Krebsz M, et al. Advanced Functional Materials, 2017, 27(46), 1702891.
20 Ma Y L· Ke R M, Li S C, Hu T H, et al. Materials Reports, 2019, 33(Z1), 57(in Chinese).
马依拉·克然木, 李首城, 胡天浩, 等. 材料导报, 2019, 33(Z1), 57.
21 Ye J, Lu J, Ma T, et al. Analytical Chemistry, 2023, 95(19), 7685.
22 Huang X, Li H, Li J, et al. Nano Letters, 2022, 22(8), 3447.
23 Elsehly E M, Ibrahim E M M, El-Hadek M A, et al. Physica E-Low-Dimensional Systems & Nanostructures, 2023, 146, 115566.
24 Wu Z Z, Zhang X L, Niu Z Z, et al. Journal of the American Chemical Society, 2022, 144(1), 259.
25 Qiu C, Wang X, Liu X, et al. Electrochimica Acta, 2012, 67, 140.
26 Barton S C, Gallaway J, Atanassov P. Chemical Reviews, 2004, 104(10), 4867.
27 Chung Y, Tannia D C, Kwon Y. Chemical Engineering Journal, 2018, 334, 1085.
28 Ren W, Xiong L, Nie G, et al. Environmental Science & Technology, 2020, 54(2), 1267.
29 Li Y, Yang S, Bao W, et al. Nature Communications, 2024, 15(1), 6634.
[1] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[2] 刘强, 邓橙, 李海云, 商怡然, 胡恩源, 朱孟府, 耿宏章. 氮掺杂碳纳米管包覆金属钴催化剂的制备及催化过氧化氢氧化性能研究[J]. 材料导报, 2025, 39(16): 24040170-6.
[3] 李红泰, 郭鹏, 安立宝. 硼掺杂碳纳米管吸附硫污染物性能及机理的DFT研究[J]. 材料导报, 2025, 39(15): 24060050-6.
[4] 陈龙, 陈振宇, 曾旭, 吴雨龙, 郭雅妮, 孙义民. 基于铋氧族化合物/碳纳米管复合物的柔性微型超级电容器[J]. 材料导报, 2025, 39(12): 24050056-7.
[5] 谢克难, 何雨家, 张琦, 谢璐, 何汶轩. 葡萄糖响应涂层修饰的聚醚醚酮用于糖尿病骨缺损的抗菌治疗研究[J]. 材料导报, 2025, 39(12): 24030239-7.
[6] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[10] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[11] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[12] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[13] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[14] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[15] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed