Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030239-7    https://doi.org/10.11896/cldb.24030239
  高分子与聚合物基复合材料 |
葡萄糖响应涂层修饰的聚醚醚酮用于糖尿病骨缺损的抗菌治疗研究
谢克难1,*, 何雨家2, 张琦3, 谢璐4, 何汶轩5
1 四川大学锦江学院白酒学院,四川 眉山 620860
2 石家庄医学高等专科学校,石家庄 050500
3 四川剑南春酒厂有限公司,四川 绵竹 618200
4 四川大学华西口腔医院修复科,口腔疾病研究国家重点实验室,成都 610041
5 四川大学化学工程学院,成都 610065
PEEK with Glucose Responsive Coating for Diabetic Bone Defects Antibiotic Therapy
XIE Kenan1,*, HE Yujia2, ZHANG Qi3, XIE Lu4, HE Wenxuan5
1 School of Liquor-Brewing Engineering, Sichuan University Jinjiang College, Meishan 620860, Sichuan, China
2 Shijiazhuang Medical College, Shijiazhuang 050500, China
3 Jiannanchun Distillery Co., Ltd., Mianzhu 618200, Sichuan, China
4 Department of Restoration, West China School/Hospital of Stomatology, Sichuan University, Chengdu 610041, China
5 School of Chemical Engineering, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 40927KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 糖尿病骨缺损患者伤口微环境高葡萄糖、低pH的特点使其极易受到病原菌侵害,导致骨细胞功能障碍和诱导破骨细胞形成,从而严重影响植入手术的修复效果。目前利用骨植入体修复材料聚醚醚酮(PEEK)填充缺损部位虽然已经成为一种有前景的治疗手段,却具有抗菌能力差、促成骨性能差和无法响应糖尿病微环境的缺点。为解决上述问题,本工作在PEEK表面研究构筑了一种由铜(Cu)螯合聚多巴胺(PDA)的金属多酚网络(Cu/MPN)和葡萄糖氧化酶(GOx)组成的葡萄糖响应涂层,用于增强糖尿病骨缺损的治疗效果。对修饰后的植入体表面形貌、化学组成、Zeta电位和水接触角等指标进行分析并测定了GOx负载量和近红外光(NIR)照射下的升温曲线,随后进一步验证其体外产生H2O2和·OH的能力,最后进行了抗菌和生物安全性检测。结果表明,该PEEK植入体成功构建Cu/MPN@GOx涂层;该涂层在葡萄糖环境下可以产生H2O2并进一步反应产生·OH,在高糖环境下对S.aureus和E.coli有显著抗菌作用;同时该涂层对小鼠胚胎成骨细胞(MC3T3-E1)未表现出细胞毒性,符合生物安全标准。总之,本工作提出的葡萄糖诱导抗菌和促成骨涂层修饰的新策略可为治疗顽固性糖尿病骨缺损奠定实验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢克难
何雨家
张琦
谢璐
何汶轩
关键词:  聚醚醚酮(PEEK)  糖尿病  葡萄糖氧化酶(GOx)  骨植入体相关感染  抗菌    
Abstract: The characteristics of high glucose concentration and low pH value in the wound microenvironment of diabetic patients make them vulnerable to the invasion of pathogens, dysfunction of bone cells and the induction of osteoclasts, which extremely affects the repair efficacy of implantation surgery. Presently, polyetheretherketone (PEEK) has become a promising bone implant. But its poor antibacterial ability, poor osteogenic capability and unable to respond to the microenvironment of diabetes restrictes the further application. To reverse such defects, a glucose response coating composed of copper (Cu) chelated polydopamine (PDA) metal polyphenol network (Cu/MPN) and glucose oxidase (GOx) was constructed on the surface of PEEK. After analyzing the surface morphology, chemical composition, Zeta potential and water contact angle of the modified implants, the loading capacities of GOx, temperature curves under NIR and abilities to produce H2O2 and ·OH in vitro were further verified. Finally, antibacterial and biosafety tests were conducted. The results indicated that we successfully constructed Cu/MPN@GOx coating on the PEEK surface, and it can produce H2O2 and further react to ·OH when glucose exists. The coating had significant antibacterial effects on S.aureus and E.coli in high sugar microenvironment and it did not exhibit cytotoxicity. In conclusion, the new strategy of glucose sensitive antibacterial and osteogenic coating modification proposed in this study has laid an experimental foundation for the treatment of intractable diabetic bone defects.
Key words:  polyetheretherketone (PEEK)    diabetes    glucose oxidase (GOx)    implant infection    antibacterial
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金委员会青年科学基金项目(52002255)
通讯作者:  *谢克难,现任四川大学锦江学院白酒学院教授。主要从事新型功能材料、生物材料和应用化学研究。xiekenan63@163.com   
引用本文:    
谢克难, 何雨家, 张琦, 谢璐, 何汶轩. 葡萄糖响应涂层修饰的聚醚醚酮用于糖尿病骨缺损的抗菌治疗研究[J]. 材料导报, 2025, 39(12): 24030239-7.
XIE Kenan, HE Yujia, ZHANG Qi, XIE Lu, HE Wenxuan. PEEK with Glucose Responsive Coating for Diabetic Bone Defects Antibiotic Therapy. Materials Reports, 2025, 39(12): 24030239-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030239  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030239
1 Tian P, Zhao L, Kim J, et al. Bioactive Materials, 2023, 26, 231.
2 Shu R, Sun J, Li B, et al. Advanced Functional Materials, 2023, 33 (27), 2214873.
3 Duan J, Wu J L, Lin T, et al. Materials Reports, 2023, 37 (10), 198 (in Chinese).
段晶, 吴佳蕾, 林涛, 等. 材料导报, 2023, 37 (10), 198.
4 Wang H, Fu X, Shi J, et al. Advanced Science, 2021, 8 (20), 2101778.
5 Yi R, Wang F H, Liu Y C, et al. Materials Reports, 2023, 37 (11), 205 (in Chinese).
易荣, 王法衡, 刘永财, 等. 材料导报, 2023, 37 (11), 205.
6 Mo S, Mehrjou B, Tang K, et al. Chemical Engineering Journal, 2020, 392, 123736.
7 Wang X, Pan L, Zheng A, et al. Bioactive Materials, 2023, 24, 236.
8 Qi Y, Gong J, Yang D Y, et al. Materials Reports, 2019, 33 (10), 1756 (in Chinese).
祁渊, 龚俊, 杨东亚, 等. 材料导报, 2019, 33 (10), 1756.
9 Li B, Shu R, Dai W, et al. Small, 2022, 18 (45), 2203619.
10 Fu L H, Qi C, Hu Y R, et al. Advanced Materials, 2019, 31 (21), 1808325.
11 Fu L H, Qi C, Lin J, et al. Chemical Society Reviews, 2018, 47 (17), 6454.
12 Fang C, Deng Z, Cao G, et al. Advanced Functional Materials, 2020, 30 (16), 1910085.
13 Lyu M, Zhu D, Kong X, et al. Advanced Healthcare Materials, 2020, 9 (11), 1901819.
14 Wang T, Dong D, Chen T, et al. Chemical Engineering Journal, 2022, 446, 137172.
15 Deng Y, Ouyang X, Sun J, et al. Bioactive Materials, 2023, 25, 748.
16 Zhu Y, Archer W R, Morales K F, et al. Angewandte Chemie, 2023, 135 (22), 202302303.
17 Ma B, Wang S, Liu F, et al. Journal of the American Chemical Society, 2018, 141 (2), 849.
18 Zhang S, Jin L, Liu J, et al. Advanced Functional Materials, 2022, 32 (23), 2113397.
19 Fu L H, Wan Y, Qi C, et al. Advanced Materials, 2021, 33 (7), 2006892.
20 Alfieri M L, Weil T, Ng D Y W, et al. Advances in Colloid and Interface Science, 2022, 305, 102689.
21 Fu Y, Yang L, Zhang J, et al. Materials horizons, 2021, 8 (6), 1618.
22 Ding F, Gao X, Huang X, et al. Biomaterials, 2020, 245, 119976.
23 Getachew G, Korupalli C, Rasal A S, et al. Composites Part B:Engineering, 2021, 226, 109364.
24 Zhan L, Yin X, Zhang Y, et al. Biomaterials Advances, 2023, 146, 213306.
[1] 刘皓珩, 郭倩如, 田锦, 门杰, 李可洲. 负载MXene纳米片的冻融水凝胶的制备及防治术后胰瘘的研究[J]. 材料导报, 2025, 39(9): 24040053-9.
[2] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[3] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[4] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[5] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[6] 朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
[7] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[8] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[9] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[10] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[11] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[12] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[13] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[14] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[15] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed