Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24040170-6    https://doi.org/10.11896/cldb.24040170
  金属与金属基复合材料 |
氮掺杂碳纳米管包覆金属钴催化剂的制备及催化过氧化氢氧化性能研究
刘强1,2, 邓橙2,*, 李海云2, 商怡然2, 胡恩源2, 朱孟府2, 耿宏章1,*
1 天津工业大学材料科学与工程学院,天津 300387
2 军事科学院系统工程研究院,天津 300161
Preparation of Metal Cobalt Embedded N-doped Carbon Nanotube Catalyst and Its Performance for Catalyzing Oxidative Dye Degradation by Hydrogen Peroxide
LIU Qiang1,2, DENG Cheng2,*, LI Haiyun2, SHANG Yiran2, HU Enyuan2, ZHU Mengfu2, GENG Hongzhang1,*
1 School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
2 Systems Engineering Institute, Academy of Military Sciences of the Chinese People’s Liberation Army, Tianjin 300161, China
下载:  全 文 ( PDF ) ( 18844KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用固相热解法制备出包覆金属钴(Co)的氮掺杂碳纳米管(NCNT)催化剂(NCNT@Co),对其形态和结构进行表征,并以亚甲基蓝(Methy-lene blue,MB)为目标污染物,考察了催化剂用量及溶液pH值等因素对催化过氧化氢氧化性能的影响。结果表明,金属Co成功嵌入碳纳米管结构,形成碳纳米管包覆Co的壳-核结构;当NCNT@Co催化剂加入量为20 mg、反应15 min时,其展现出优异的催化过氧化氢氧化活性,MB的降解率高达91.31%;NCNT@Co催化剂在pH为3~9范围内均表现出较高的催化活性。此外,NCNT@Co催化剂具有良好的使用稳定性,五次循环实验后,对MB的降解率仍保持在初始值的80.89%。本研究可为高性能催化过氧化氢氧化催化剂的制备提供一种简便易行的方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘强
邓橙
李海云
商怡然
胡恩源
朱孟府
耿宏章
关键词:  催化过氧化氢氧化  碳纳米管  壳-核结构  氮掺杂    
Abstract: Metal cobalt embedded N-doped carbon nanotube (NCNT@Co) catalyst was prepared by solid-phase pyrolysis, and its morphology and structure were systematically characterized. The effects of catalyst dosage and solution pH on catalytic performance for hydrogen peroxide oxidation reaction were investigated using methylene blue (MB) as the target pollutant. The results show that the metal Co was successfully embedded in carbon nanotube structure, forming a shell-core structure. When the addition of NCNT@Co is 20 mg and the reaction time is 15 min, it exhibits the best catalytic activity for hydrogen peroxide oxidation and the degradation rate of MB reaches up to 91.31%. Meanwhile, the NCNT@Co catalyst exhibits high catalytic activity over the pH range of 3—9. Moreover, its good stability was also proved by five recycling tests and the degradation rate of MB is still maintained at 80.89% of the initial value. This study provides a simple method for the preparation of high-perfor-mance catalysts for catalytic hydrogen peroxide oxidation.
Key words:  hydrogen peroxide catalytic oxidation    carbon nanotube    shell-core structure    nitrogen doping
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  O643  
通讯作者:  邓橙,博士,军事科学院系统工程研究院高级工程师、硕士研究生导师。主要从事无机功能性膜材料与水处理技术的基础理论和应用研究。dcnudt@163.com;耿宏章,博士,天津工业大学教授、博士研究生导师。主要从事碳纳米材料(碳纳米管、石墨烯)的合成、表征与功能化应用,碳基复合材料在能源存储(超级电容器、电池)与柔性电子(透明导电薄膜、可穿戴器件)中的应用等相关方面的研究。genghz@tiangong.edu.cn   
作者简介:  刘强,天津工业大学材料科学与工程学院硕士研究生,在耿宏章教授的指导下开展碳纳米催化过氧化氢氧化材料的制备及催化性能研究。
引用本文:    
刘强, 邓橙, 李海云, 商怡然, 胡恩源, 朱孟府, 耿宏章. 氮掺杂碳纳米管包覆金属钴催化剂的制备及催化过氧化氢氧化性能研究[J]. 材料导报, 2025, 39(16): 24040170-6.
LIU Qiang, DENG Cheng, LI Haiyun, SHANG Yiran, HU Enyuan, ZHU Mengfu, GENG Hongzhang. Preparation of Metal Cobalt Embedded N-doped Carbon Nanotube Catalyst and Its Performance for Catalyzing Oxidative Dye Degradation by Hydrogen Peroxide. Materials Reports, 2025, 39(16): 24040170-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040170  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24040170
1 Ioannou L A, Puma G L, Fatta-Kassinos D. Journal of Hazardous Materials, 2015, 286, 343.
2 Xue X D, Jin Q T. Environmental Protection, 2001(6), 13 (in Chinese).
薛向东, 金奇庭. 环境保护, 2001(6), 13.
3 Wang Y, Ren N, Xi J. ACS ES&T Engineering, 2021, 1(1), 32.
4 Zhu G, Zhu J, Jiang W, et al. Applied Catalysis B-Environmental, 2017, 209, 729.
5 Ma J, Wang C, He H. Applied Catalysis B-Environmental, 2017, 201, 503.
6 Wu D, Hu Z, Zhang X, et al. RSC Advances, 2017, 7(60), 37487.
7 Huynh M M, Do D P, Tran T N, et al. Industrial & Engineering Chemistry Research, 2018, 148, 924.
8 Wang Y, Duan X, Xie Y, et al. ACS Catalysis, 2020 10(22), 13383.
9 Wang Y, Xie Y, Sun H, et al. ACS Applied Materials & Interfaces, 2016, 8, 9710.
10 Song Z, Wang M, Wang Z, et al. Environmental Science & Technology, 2019, 53(9), 5337.
11 Sun Z, Zhao L, Liu C, et al. Environmental Science & Technology, 2019, 53(17), 10342.
12 Duan X, Sun H, Wang Y, et al. ACS Catalysis, 2015, 5(2), 553.
13 Wang Y, Ren N, Xi J, et al. ACS ES&T Engineering, 2021, 1(1), 32.
14 Bian W W. The studies on preparation and catalytic property of graphene-based metal and metal oxides. Master's Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
边雯雯. 石墨烯基金属和金属氧化物材料制备与催化性能研究. 硕士学位论文, 哈尔滨工业大学, 2010.
15 Li G. Research of novel MnO2 nanocomposites synthesis and its perfor-mance of organic pollutant catalytic ozonation in water. Ph. D. Thesis, Soochow University, China, 2017 (in Chinese).
李刚. 纳米态二氧化锰与复合物的合成及催化臭氧化降解水中有机污染物的性能研究. 博士学位论文, 苏州大学, 2017.
16 Xiang J, Li J, Zhang X. Journal of Materials Chemistry A, 2014, 2(40), 16905.
17 Tong M, Wang L, Yu P, et al. Frontiers of Chemical Science and Engineering, 2018, 12(3), 417.
18 Zhao B, Ding Y, Wen Z. Transactions of Tianjin University, 2019, 25(5), 429.
19 Xie Y, Feng C, Guo Y, et al. Applied Surface Science, 2021, 536, 147786.
20 Ma X, Chai H, Cao Y, et al. Journal of Colloid and Interface Science, 2018, 514, 656.
21 Zhao L, Sun Z Z, Ma J. Environmental Science & Technology, 2009, 43(11), 4157.
22 Li E, Wang Y, Zhang D. Water Research, 2021, 201, 117352.
23 Zhang Y, Guo X, Huang M, et al. Journal of Physics and Chemistry of Solids, 2015, 83, 40.
24 Wolski L, Walkowiak A, Ziolek M. Catalysis Today, 2019, 333, 54.
25 Yu C, Li G, Wei L, et al. Catalysis Today, 2014, 224, 154.
26 Khaksar M, Amini M, Boghaei D M, et al. Catalysis Communications, 2015, 72, 1.
27 Ehrhardt C, Gjikaj M, Brockner W. Thermochimica Acta, 2005, 432, 36.
28 Qasem M A A, Abdul A M, Hakeem A S, et al. Current Nanoscience, 2018, 14, 154.
29 Shi L B, Li Y F, Cai X, et al. Journal of Electroanalytical Chemistry, 2017, 799, 512.
30 Wang Y L, Zhao P Y, Liang B L, et al. Carbon, 2023, 202, 66.
31 Rauf M A, Meetani M A, Khaleel A, et al. Chemical Engineering Journal, 2010, 157, 373.
32 Wang C, Zhang Y, Yu L, et al. Journal of Hazardous Materials, 2013, 260, 851.
33 Li Q, Chang Y, Xie F, et al. Arabian Journal of Chemistry, 2021, 14, 103311.
34 Rauf M A, Meetani M A, Khaleel A, et al. Chemical Engineering Journal, 2010, 157, 373.
35 Wu L, Guo P, Wang X, et al. Chemosphere, 2022, 288, 132646.
36 Wolski L, Walkowiak A, Ziolek M. Catalysis Today, 2019, 333, 54.
37 Wang B, Dong B, Xu M, et al. Chemical Engineering Science, 2017, 168, 90.
38 Wang L, Wang L, Shi Y, et al. Journal of Colloid and Interface Science, 2022, 607, 451.
39 Wolski L, Ziolek M. AppliedCatalysis B, Environmental, 2018, 224, 634.
40 Chen J W, Zhao L, Yi Y, et al. Materials Letters, 2022, 324, 132631.
[1] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[2] 李红泰, 郭鹏, 安立宝. 硼掺杂碳纳米管吸附硫污染物性能及机理的DFT研究[J]. 材料导报, 2025, 39(15): 24060050-6.
[3] 陈龙, 陈振宇, 曾旭, 吴雨龙, 郭雅妮, 孙义民. 基于铋氧族化合物/碳纳米管复合物的柔性微型超级电容器[J]. 材料导报, 2025, 39(12): 24050056-7.
[4] 董梦娇, 徐洋洋, 李净珊, 叶仪鹏, 李秉芯, 陈昊天. 氮掺杂碳纳米纤维负载Co-N-C纳米片用于电催化氧还原反应[J]. 材料导报, 2025, 39(11): 24040222-7.
[5] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[6] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[7] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[8] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[9] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[10] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[11] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[12] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[13] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[14] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[15] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed