Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24070129-9    https://doi.org/10.11896/cldb.24070129
  金属与金属基复合材料 |
直流电场对X80钢在硫酸盐还原菌体系中腐蚀行为的影响
张雅妮1,*, 段博文1, 宋伟1, 张成鑫1, 樊冰2, 王思敏3
1 西安石油大学材料科学与工程学院,西安 710065
2 中国石油集团工程材料研究院有限公司,西安 710077
3 首钢集团长治钢铁有限公司,山西 长治 046031
Effect of DC Electric Field on the Corrosion Behavior of X80 Steel in Sulfate-reducing Bacteria System
ZHANG Yani1,*, DUAN Bowen1, SONG Wei1, ZHANG Chengxin1, FAN Bing2, WANG Simin3
1 School of Materials Science and Engineering, University of Xi'an Shiyou, Xi'an 710065, China
2 China National Petroleum Engineering Materials Research Institute Co., Ltd., Xi'an 710077, China
3 Shougang Group Changzhi Iron and Steel Co., Ltd., Changzhi 046031, Shanxi, China
下载:  全 文 ( PDF ) ( 34342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着高压输电线路、轨道交通、油气管道共用公共交通走廊,电场环境必然会对硫酸盐还原菌(SRB)腐蚀行为产生影响。本工作通过生物培养技术、浸泡实验、电化学等实验方法,结合Na2S2O3滴定技术、扫描电镜(SEM)、X射线光电子能谱(XPS)、激光共聚焦等分析手段,研究了直流电场对硫酸盐还原菌环境中X80管线钢腐蚀行为的影响,包含SRB数量的变化、硫离子含量和价态的变化、表面生物膜的特征、腐蚀速率及电化学过程特征。结果表明:弱电场促进了SRB的生长,延长了SRB的生命周期,有利于基体表层致密膜层的形成,阻碍了腐蚀性离子的侵蚀;强电场抑制了SRB的生长,缩短了SRB的生命周期,并且在强电场的作用下膜层疏松多孔。同时外加电场改变了膜层中S元素的赋存方式,强电场环境削弱了S元素由氧化态(S6+)向还原态(S2-)的转变。在0~1 200 V/m的测试范围内,电场强度为500 V/m时S2-的含量最高,产物膜最完整致密,腐蚀速率最小;在电场强度为1 200 V/m时,S2-含量最低。强电场作用加速了腐蚀性离子和电子的定向迁移,导致X80钢具有最大的失重速率和点蚀速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张雅妮
段博文
宋伟
张成鑫
樊冰
王思敏
关键词:  硫酸盐还原菌  电场  X80  生物膜  S离子价态  点蚀    
Abstract: As high-voltage transmission lines, rail transit, and oil and gas pipelines share public transportation corridor, the produced electric field envi-ronment has an inevitable influence on the corrosion behavior of sulfate-reducing bacteria (SRB). In this work, the effect of DC electric field on the corrosion behavior of X80 pipeline steel in the sulfate-reducing bacteria environment was investigated. The SRB quantity, the concentration and valence state of sulfide ions, the characteristics of surface biofilm, corrosion rate and electrochemical process, were analyzed by biological culture technology, immersion experiment, electrochemistry and other experimental methods, combined with Na2S2O3 titration technology, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), laser confocal and other analytical methods. The findings show that low voltage applied DC field promotes the growth of SRB, prolongs the life cycle of SRB, facilitates the formation of dense film layer on the surface of the matrix, and further hinders the attack of corrosive ions. While the high voltage applied DC field inhibits the growth of SRB, shortens the life cycle of SRB, and results in the film layer loose and porous. Meanwhile, the applied DC electric field changed the valency state of S element in film, high voltage applied DC field inhibits the S transformation from oxidation state (S6+) to reduction state (S2-). The dense film with the hig-hest S2- content and the lowest substrate corrosion rate can be obtained by applying a voltage of 500 V/m in the tested DC electric field voltage range within 0 —1 200 V/m. When the applied DC field voltage is 1 200 V/m, the content of S2- is the lowest in the dense film. The directional migration of corrosive ions and electrons is accelerated strongly by higher field strength, and the X80 steel has the highest uniform corrosion rate and pitting corrosion rate.
Key words:  sulfate-reducing bacteria    electric field    X80    biofilm    S-ion valence    pitting
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TG172  
基金资助: 国家自然科学基金(52401111);陕西省自然科学基础研究计划项目(2024JC-YBQN-0457);西安市科技计划项目(24GXFW0075)
通讯作者:  张雅妮,博士,西安石油大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事金属材料的腐蚀与防护、石油器件的失效分析等研究工作。zhangyn@xsyu.edu.cn   
引用本文:    
张雅妮, 段博文, 宋伟, 张成鑫, 樊冰, 王思敏. 直流电场对X80钢在硫酸盐还原菌体系中腐蚀行为的影响[J]. 材料导报, 2025, 39(15): 24070129-9.
ZHANG Yani, DUAN Bowen, SONG Wei, ZHANG Chengxin, FAN Bing, WANG Simin. Effect of DC Electric Field on the Corrosion Behavior of X80 Steel in Sulfate-reducing Bacteria System. Materials Reports, 2025, 39(15): 24070129-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070129  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24070129
1 Arruda C K C, Dart F C, Lu G D, et al. Electric Power Systems Research, 2020, 180 , 106122.
2 Xu D, Gu T, Lovley D R. Nature Reviews, 2023, 21(11), 705.
3 Welikala S, Saadi S A, Gates W P, et al. Frontiers in Materials, 2024, 11, 203.
4 Huang H, Guo X, Zhang G, et al. Corrosion Science, 2011, 53(10), 3446.
5 Li S B. Study on the corrosion behavior of X70 steel under the synergistic effect of direct current and SRB. Master's Thesis, Liaoning Shihua University, China, 2019 (in Chinese).
李帅兵. 直流电和SRB协同作用下X70钢腐蚀行为研究. 硕士学位论文, 辽宁石油化工大学, 2019.
6 Ding Q M, Qin Y X, Gao Y N, et al. Thermal Working Technology, 2023, 52(2), 32 (in Chinese).
丁清苗, 秦永祥, 高宇宁, 等. 热加工工艺, 2023, 52(2), 32.
7 Wang H Y, Wu M, Xie F, et al. Material Protection, 2016, 49(7), 9 (in Chinese).
王海燕, 吴明, 谢飞, 等. 材料保护, 2016, 49(7), 9.
8 Huang H L, Pan Z Q, Guo X P, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(1), 285.
9 Zhang H, Gao B W, Yan M C, et al. Surface Technology, 2022, 51(8), 330 (in Chinese).
张辉, 高博文, 闫茂成, 等. 表面技术, 2022, 51(8), 330.
10 Liu T, Cheng Y F. Journal of Alloys and Compounds, 2017, 729, 180.
11 Li T T. Study on the corrosion behavior of X80 steel by the interaction of alternating current and microorganisms. Master's Thesis, China University of Petroleum (Beijing), China, 2021 (in Chinese).
李婷婷. 交流电与微生物共同作用对X80钢的腐蚀行为研究. 硕士学位论文, 中国石油大学(北京), 2021.
12 Song D, Zou J, Sun L, et al. Vacuum, 2024, 22(41), 183.
13 Hulsheger H, Potel J, Niemann E G. Radiation and Environmental Biophysics, 1983, 22(2), 149.
14 Yuan S, Liang B, Zhao Y, et al. Corrosion Science, 2013, 74, 353.
15 Florence B J, Maelle M, Ahmad F, et al. Biofouling, 2016, 32(5), 547.
16 Lee W, Lewandowski Z, Nielsen P H, et al. Biofouling, 1995, 8(3), 165.
17 Yan L Y, Tie X C, Guangdong Z. Geomicrobiology Journal, 2023, 40(3), 247.
18 Liu H, Gu T, Asif M, et al. Corrosion Science, 2017, 114, 102.
19 Chen Y, Dai S J, Li H X, et al. Metal Mine, 2024(2), 163 (in Chinese).
陈瑜, 代淑娟, 李洪祥, 等. 金属矿山, 2024(2), 163.
20 Hang F F, Yang H J, Guo Z G, et al. Applied Chemicals, 2024, 53(2), 273 (in Chinese).
黄霏霏, 杨后娟, 郭振国, 等. 应用化工, 2024, 53(2), 273.
21 Li Y F. Research on the recovery of gold from waste circuit boards by ammonia (amine)-thiosulfate method. Master's Thesis, Kunming University of Science and Technology, China, 2023 (in Chinese).
李玉芳. 氨(胺)-硫代硫酸盐法回收废旧电路板中金的研究. 硕士学位论文, 昆明理工大学, 2023.
22 Yu W X M, Feng W S, Mu X L, et al. Journal of Fuel Chemistry and Technology, 2024, 52(11), 1652 (in Chinese).
宇文晓萌, 冯文爽, 穆晓亮, 等. 燃料化学学报, 2024, 52(11), 1652.
23 Xu R H. Preparation of modified TiO2 nanotubes and their CO2 properties for photocatalytic reduction. Master's Thesis, Northeast Petroleum University, China, 2023 (in Chinese)
徐含冰. 改性TiO2纳米管制备及其光催化还原CO2性能研究. 硕士学位论文, 东北石油大学, 2023.
24 Jia F H, Guo C Y, Zou X Y, et al. Journal of Materials Heat Treatment, 2023, 44(10), 78 (in Chinese).
贾飞宏, 郭宇晨, 邹祥宇, 等. 材料热处理学报, 2023, 44(10), 78.
25 Song X R, Zhao Y, Wang Y X, et al. Journal of China Coal Society, DOI:10. 13225/j. cnki. jccs. 2024. 0114(in Chinese).
宋昕芮, 赵玉, 王玉晓, 等. 煤炭学报, DOI:10. 13225/j. cnki. jccs. 2024. 0114.
26 Ma Y Q, Wang Z H, Yang M Y, et al. Metal mines, 2023(8), 80 (in Chinese).
马英强, 汪子涵, 杨绵延, 等. 金属矿山, 2023(8), 80.
27 Xu Z R, Guo C L, Ke C D, et al. Journal of Environmental Science, 2024, 44(9), 227(in Chinese).
徐子冉, 郭楚玲, 柯常栋, 等. 环境科学学报, 2024, 44(9), 227.
28 Chen S T, Wang H, Cui W Q, et al. Molecular Catalysis, 2024, 38(1), 17 (in Chinese).
陈顺通, 王欢, 崔文权. 分子催化, 2024, 38(1), 17.
29 Li Y L, Qiu X W, Jiang Y M, et al. Chinese Journal of Eco-Agriculture, 2024, 32(4), 559(in Chinese).
黎衍亮, 邱秀文, 江玉梅, 等. 中国生态农业学报, 2024, 32(4), 559.
30 Zhang X Y, Dong F Q, Zheng F, et al. Journal of Petromineralogy, 2024, 43(4), 994(in Chinese).
张星宇, 董发勤, 郑飞, 等. 岩石矿物学杂志, 2024, 43(4), 994.
31 Li Y, Xue Y, Chowdhury R T, et al. mSphere, 2024, 2, 5924.
[1] 李亚莎, 曾跃凯, 赵光辉, 田泽, 王璐敏, 吴雕. 外电场下极性基团对聚丙烯单分子链沿面放电影响的研究[J]. 材料导报, 2025, 39(13): 24050193-8.
[2] 张悦, 管千慧, 周政, 陈全, 吴敏, 易鹏. 纳米颗粒和微生物相互作用过程中生物膜的形成机制与效应[J]. 材料导报, 2025, 39(12): 24050009-9.
[3] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[4] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[5] 胥聪敏, 李雪丽, 朱文胜, 朱世东, 杨兴, 高豪然, 孙姝雯. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 23090099-6.
[6] 姜绍飞, 林金星, 宋华霖, 王威, 陈敏文. 基于多物理场耦合的大气环境下碳钢点蚀演化及速率预测模型[J]. 材料导报, 2024, 38(19): 23060012-7.
[7] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[8] 程尚华, 李方亮, 张一琪, 武少杰, 程方杰. 氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响[J]. 材料导报, 2023, 37(18): 22020113-6.
[9] 姜万珩, 张奇亮, 牛璐, 刘梁, 黄一, 徐云泽. 921A高强碳素钢在天然流动海水中的腐蚀行为[J]. 材料导报, 2023, 37(18): 22030153-8.
[10] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[11] 肖美霞, 冷浩, 姚婷珍, 王磊, 何成. 电场调控范德华异质薄膜能隙的第一性原理研究:单层SiC沉积在表面氢化的BN薄膜上[J]. 材料导报, 2022, 36(8): 20080062-6.
[12] 许镇, 陈旋, 吴晓春. 回火工艺对含铜塑料模具钢在中性氯化钠溶液中腐蚀行为的影响[J]. 材料导报, 2022, 36(20): 21030169-8.
[13] 周桂娟, 童志, 陈晓华, 郑文跃, 熊道英, 王艳林. X80管线钢焊接与焊缝开裂影响因素研究进展[J]. 材料导报, 2022, 36(2): 21100169-9.
[14] 齐季, 谢飞, 王丹, 赵杨. 微生物与磁场作用下管线钢的腐蚀行为研究进展[J]. 材料导报, 2021, 35(7): 7169-7175.
[15] 张肖飞, 马涛, 华晓春, 王孝义, 饶思贤. 高流速强湍流下低碳钢局部环烷酸腐蚀行为[J]. 材料导报, 2021, 35(14): 14136-14141.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed