Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050221-13    https://doi.org/10.11896/cldb.24050221
  高分子与聚合物基复合材料 |
影响真空绝热板导热性能的因素综述
戎贤1,2, 羊玉祺1, 张健新1,2,*
1 河北工业大学土木与交通学院,天津 300401
2 河北工业大学河北省土木工程技术研究中心,天津 300401
Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review
RONG Xian1,2, YANG Yuqi1, ZHANG Jianxin1,2,*
1 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
2 Civil Engineering Technology Research Center of Hebei Province, Hebei University of Technology, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 44937KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,世界对碳中和和节能减排的需求日益增加,并且这将成为一种长期趋势。对建筑领域而言,一种行之有效的方法就是降低建筑物的热量损耗。真空绝热板作为一种高性能的绝热材料,随着其性能和制作工艺的不断优化和完善,已经广泛应用于建筑领域,发挥越来越重要的作用。本文综述了真空绝热板导热性能的影响因素,详细介绍了芯材、阻隔膜和吸气剂的研究进展,并总结了真空绝热板的研究现状。同时对真空绝热板的热导率、使用寿命和热桥效应等进行了界定,论述了其在建筑领域的应用现状。本文旨在帮助相关从业人员综合了解影响真空绝热板导热性能的因素,并据此采取措施来制造出导热性能更低、使用寿命更长的真空绝热板。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戎贤
羊玉祺
张健新
关键词:  真空绝热板  导热系数  绝热  节能    
Abstract: In recent years, there has been a growing global demand for carbon neutrality and energy efficiency, which are expected to become long-term trends. In the field of architecture, an effective approach to achieve this is to reduce heat loss in buildings. Vacuum insulation panels (VIPs), a type of high-performance insulation material, have been increasingly utilised in the construction industry and have played an increa-singly important role as their performance and manufacturing processes continue to improve. This paper provides a review of the factors affecting the thermal conductivity of VIPs and presents a detailed overview of the research progress on core materials, barrier films, and getters. The current research status of VIPs is summarised, including their thermal conductivity, service life, and thermal bridging effects, as well as their applications in the field of architecture. This review aims to provide a comprehensive understanding for relevant practitioners on the factors influencing the thermal conductivity of VIPs, and based on which, measures can be taken to produce VIPs with lower thermal conductivity and longer service life.
Key words:  vacuum insulation panel    thermal conductivity    thermal insulation    energy conservation
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU55+1.2  
基金资助: 国家自然科学基金(52208160);河北省高等学校科学研究项目(CXY2023016);河北省建设科技研究项目(2022-2130)
通讯作者:  *Jianxin Zhang,Ph.D.,associate professor and doctoral supervisor at Hebei University of Technology’s School of Civil & Transportation Engineering,specializes in prefabricated buildings and ultra-low energy consumption architecture.With over 20 publications in journals like Engineering Structures and Journal of Building Engineering,she demonstrates a strong research profile in her field.zhangjianxin505@126.com   
作者简介:  Xian Rong,professor and doctoral supervisor in Civil & Transportation Engineering at Hebei University of Technology,holds degrees from Hebei Institute of Technology (B.Eng.) and Tianjin University (M.Sc.,Ph.D.).His research specializes in high-performance concrete,prefabricated buildings,ultra-low energy designs,and engineering management,with over 200 publications showcasing his expertise.
引用本文:    
戎贤, 羊玉祺, 张健新. 影响真空绝热板导热性能的因素综述[J]. 材料导报, 2025, 39(13): 24050221-13.
RONG Xian, YANG Yuqi, ZHANG Jianxin. Factors Affecting the Thermal Conductivity of Vacuum-Insulated Panels:a Review. Materials Reports, 2025, 39(13): 24050221-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050221  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050221
1 Ren X, Dong L, Xu D, et al.International Journal of Hydrogen Energy, 2020, 45(59), 34326.
2 Zhao R.Journal of King Saud University-Science, 2023, 35(9), 102920.
3 Sun L, Feng N.Journal of Cleaner Production, 2023, 139688.
4 Shu H, Bie X, Zhang H, et al.Renewable Energy, 2020, 154, 1113.
5 Yi S, Abbasi K R, Hussain K, et al.Gondwana Research, 2023, 117, 41.
6 Abbasi K R, Shahbaz M, Zhang J, et al.Renewable Energy, 2022, 187, 390.
7 Bosu I, Mahmoud H, Ookawara S, et al.Solar Energy, 2023, 259, 188.
8 Wang J, Azam W.Geoscience Frontiers, 2023, 15, 101757.
9 CABEE.Construction and Architecture, 2023(2), 57.
10 Kalnæs S E, Jelle B P.Applied Energy, 2014, 116, 355.
11 Jelle B P.Energy and Buildings, 2011, 43(10), 2549.
12 Yang J, Tang J.Frontiers in Energy, 2017, 11, 1.
13 Araki K, Kamoto D, Matsuoka S.Journal of Materials Processing Techno-logy, 2009, 209(1), 271.
14 Berge A, Johansson P.Literature review of high performance thermal insulation, Chalmers University of Technology Press, Sweden, 2012.
15 Urbikain M K.Journal of Cleaner Production, 2020, 269, 121459.
16 Zhang X, Wang T, Zhang T, et al.Case Studies in Thermal Engineering, 2023, 51, 103581.
17 Hung A L D, Pásztory Z.Journal of Building Engineering, 2021, 44, 102604.
18 Alam M, Singh H. Applied Energy, 2011, 88(11), 3592.
19 Caps R, Fricke J P D, Reiss H.High Temperatures-high Pressures, 1983, 15, 225.
20 Gonçalves M, Simões N, Serra C, et al.Applied Energy, 2020, 257, 114028.
21 Singh H, Geisler M, Menzel F.Energy and Buildings, 2015, 107, 76.
22 Balaji D, Sivalingam S, Bhuvaneswari V, et al.Materials Today:Procee-dings, 2022, 62, 5371.
23 Kan A, Zhang X, Chen Z, et al.International Journal of Thermal Sciences, 2023, 187, 108176.
24 Jang C, Kim J, Song T.Energy and Buildings, 2011, 43(12), 3343.
25 Verma S, Singh H.International Journal of Thermal Sciences, 2022, 171, 107245.
26 Lee J, Song T.International Journal of Heat and Mass Transfer, 2019, 129, 380.
27 Jang C, Jung H, Lee J, et al.Applied Energy, 2013, 112, 703.
28 Verma S, Sara A, Singh H.International Journal of Thermal Sciences, 2023, 186, 108136.
29 Bouquerel M, Duforestel T, Baillis D, et al.Energy and Buildings, 2012, 54, 320.
30 Heinemann U.International Journal of Thermophysics, 2008, 29(2), 735.
31 Wegger E, Jelle B P, Sveipe E, et al.Journal of Building Physics, 2011, 35(2), 128.
32 Chen Z, Chen Z, Yang Z, et al.Energy, 2015, 93, 945.
33 Mao S, Kan A, Huang Z, et al.Materials Today Communications, 2020, 22, 100786.
34 Ni L, Chen Z, Mukhopadhyaya P, et al.International Journal of Thermal Sciences, 2022, 172, 107320.
35 Kwon J, Jang C H, Jung H, et al.International Journal of Heat and Mass Transfer, 2009, 52(23), 5525.
36 Schwab H, Heinemann U, Beck A, et al.Journal of Building Physics, 2005, 28(4), 293.
37 Baetens R, Jelle B P, Thue J V, et al.Energy and Buildings, 2010, 42(2), 147.
38 Boafo F E, Kim J, Ahn J, et al.Journal of Building Engineering, 2021, 42, 102445.
39 Sonnick S, Meier M, Ünsal-Peter G, et al.International Journal of Thermofluids, 2020, 1-2, 100012.
40 Zhuang J, Ghaffar S H, Fan M, et al.Composites Part B:Engineering, 2017, 127, 215.
41 Lim T, Seok J, Kim D D. Energies, 2017, 10(12), 2000.
42 Kan A, Zhang Q, Chen Z, et al.International Journal of Thermal Sciences, 2023, 189, 108277.
43 Liang Y Y, Ding Y F, Liu Y C, et al.Heat Transfer Engineering, 2020, 41(9-10), 882.
44 Lim C L, Adam N M, Ahmad K A.Thermal Science and Engineering Progress, 2018, 7, 302.
45 Yamamoto H, Ogura D.Journal of Building Engineering, 2023, 76, 107347.
46 Yan W, Dong X, Zhang Z, et al.Journal of Forest and Environment, 2022, 42(2), 208.
47 Midhun V C, Suresh S, Praveen B, et al.Thermal Science and Engineering Progress, 2021, 25, 101045.
48 Li C, Li B, Pan N, et al.Energy and Buildings, 2016, 125, 298.
49 Liang Y Y, Wu H J, Huang G S, et al.Procedia Engineering, 2017, 205, 2855.
50 Resalati S, Okoroafor T, Henshall P, et al.Building and Environment, 2021, 188, 107501.
51 Larisa M, Croitoru C.E3S Web of Conferences, 2019, 111, 6069.
52 Kwon J, Jung H, Yeo I S, et al.Vacuum, 2011, 85(8), 839.
53 Abu-Jdayil B, Mourad A, Hittini W, et al.Construction and Building Materials, 2019, 214, 709.
54 Wong C, Hung M.Journal of Cellular Plastics, 2008, 44(3), 239.
55 Di X, Xie Z, Chen J, et al.Building and Environment, 2020, 186, 107337.
56 Bakatovich A, Gaspar F, Boltrushevich N.Construction and Building Materials, 2022, 352, 129055.
57 Wang L, Yang Y, Chen Z, et al.Materials, 2020, 13, 4604.
58 Sun Q, Xu J, Lu C, et al.Applied Energy, 2023, 347, 121394.
59 Corker J, Marques I, Resalati S, et al.Journal of Cleaner Production, 2023, 415, 137854.
60 Dong X, Zhang Q, Lan Y, et al.Industrial Crops and Products, 2022, 188, 115691.
61 Zhao W, Yan W, Zhang Z, et al.Journal of Cleaner Production, 2022, 357, 131957.
62 Wang B, Li Z, Qi X, et al.Journal of Northwest A & F University:Natural Science Edition, 2019, 47(10), 27.
63 Li C, Saeed M, Pan N, et al.Materials & Design, 2016, 107, 440.
64 Meng C, Kan A, Qi D, et al.Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(1), 40.
65 Mao S, Kan A, Zhu W, et al.Energy and Buildings, 2020, 209, 109699.
66 Bouquerel M, Duforestel T, Baillis D, et al.Energy and Buildings, 2012, 55, 903.
67 Jung H, Jang C H, Yeo I S, et al.International Journal of Heat and Mass Transfer, 2013, 56(1), 436.
68 Biswas K, Gilmer D, Ghezawi N, et al.Vacuum, 2019, 164, 132.
69 Wang S, Feng Y, Huang Y, et al.Chinese Journal of Vacuum Science and Technology, 2013, 33, 1074.
70 Chang S J, Kim Y, Seok C G, et al.Energy and Buildings, 2021, 233, 110684.
71 Gonçalves M, Simões N, Serra C, et al.Energy and Buildings, 2022, 258, 111821.
72 Liang W, Di X, Zheng S, et al.Journal of Building Engineering, 2023, 71, 106492.
73 Mao S, Gong J, Sun W, et al.Polymer Materials Science and Engineering, 2023, 39(8), 148.
74 Zhao L, Lin J, Yu G, et al.Packaging Engineering, 2022, 43(23), 167.
75 Yuan B, Ding S, Wang D, et al.Materials Letters, 2012, 75, 204.
76 Di X, Chen Z.Journal of Nanjing University of Aeronautics and Astronautics, 2017, 49(1), 24.
77 Zheng Q R, Zhu Z W, Chen J, et al.Vacuum, 2017, 146, 111.
78 Yamamoto H, Ogura D.Energy and Buildings, 2022, 255, 111648.
79 Li C, Duan Z, Chen Q, et al.Materials & Design, 2013, 50, 1030.
80 Min D, Kim S, Kim J, et al.KIEAE Journal, 2019, 19, 81.
81 Ge H, Baba F.Energy and Buildings, 2015, 105, 106.
82 Tan Y, Yu X, Zang Y, et al.International Communications in Heat and Mass Transfer, 2023, 148, 107083.
83 Mao S, Kan A, Wang N.Applied Thermal Engineering, 2020, 169, 114980.
84 Lorenzati A, Fantucci S, Capozzoli A, et al.Energy and Buildings, 2016, 111, 164.
85 Sprengard C, Holm A H.Energy and Buildings, 2014, 85, 638.
86 Yang C, Gao X, Shao X.Physics Procedia, 2012, 32, 658.
87 Isaia F, Fantucci S, Capozzoli A, et al.Energy Procedia, 2015, 83, 269.
88 Lorenzati A, Fantucci S, Capozzoli A, et al.Energy Procedia, 2014, 62, 374.
89 Ghazi W K, Stahl T, Brunner S.Energy and Buildings, 2011, 43(6), 1241.
90 Di X, Chen Z.Acta Materiae Compositae Sinica, 2018, 35(4), 850.
91 Brunner S, Ghazi W K.Vacuum, 2014, 100, 4.
92 Kim J, Boafo F E, Kim S, et al.Case Studies in Construction Materials, 2017, 7, 329.
93 Batard A, Duforestel T, Flandin L, et al.Energy and Buildings, 2018, 173, 252.
94 Simmle H, Heinemann U, Kumaran K, et al. Vacuum insulation panels:study on VIP-components and panels for service life prediction of VIP in building applications. 2005.
95 Kan A, Kang L, Cao D.Chinese Journal of Vacuum Science and Technology, 2014, 34(7), 665.
96 Alam M, Picco M, Resalati S.Building and Environment, 2022, 214, 108934.
97 Fantucci S, Lorenzati A, Capozzoli A, et al.Energy and Buildings, 2019, 183, 64.
98 Uriarte A, Garai I, Ferdinando A, et al.Energy and Buildings, 2019, 197, 131.
99 Di X, Gao Y, Bao C, et al.Vacuum, 2013, 97, 55.
100 Zach J, Peterková J, Dufek Z, et al.Energy and Buildings, 2019, 199, 12.
101 Yrieix B, Morel B, Pons E.Energy and Buildings, 2014, 85, 617.
102 Yeo I, Jung H, Song T.Vacuum, 2014, 104, 70.
103 Di X, Gao Y, Bao C, et al.Energy and Buildings, 2014, 73, 176.
104 Kan A, Zheng N, Wu Y, et al.Cleaner Engineering and Technology, 2022, 8, 100484.
105 Liang Y, Wu H, Huang G, et al.Energy and Buildings, 2017, 154, 606.
106 De Masi R F, Ruggiero S, Vanoli G P.Applied Energy, 2020, 278, 115605.
107 Berardi U, Nikafkar M, Wi S, et al.Journal of Industrial and Engineering Chemistry, 2020, 90, 300.
108 Nussbaumer T, Wakili K G, Tanner C.Applied Energy, 2006, 83(8), 841.
109 Zhao R J, Qiao L, Gao Z J, et al.Energies, 2020, 13(7), 1559.
110 Verma S, Singh H.International Journal of Refrigeration, 2020, 112, 215.
111 Verma S, Singh H.Energy Procedia, 2019, 161, 232.
112 Vajo B, Lakatos A.Buildings, 2021, 11(11), 525.
113 Biswas K, Patel T, Shrestha S, et al.Energy and Buildings, 2019, 203, 109430.
114 Simões N, Gonçalves M, Serra C, et al.Building and Environment, 2021, 191, 107602.
115 Kim J, Kim S, Kim J.Procedia Engineering, 2017, 180, 1247.
116 Johansson P, Hagentoft C, Sasic K A.Energy and Buildings, 2014, 73, 92.
117 Hui S C M, Leung A H M.Proceedings of the Joint Symposium 2004:Servicing Dense Built Environments. Organising Committee of the Symposium, 2004, 16, 133.
118 Choi J Y, Nam J, Yun B Y, et al.Industrial Crops and Products, 2022, 183, 114931.
119 Ozbalta T G, Yildiz Y, Bayram I, et al.Energy and Buildings, 2021, 250, 111301.
120 Aparicio-Fernández C, Torner M E, Cañada-Soriano M, et al.Developments in the Built Environment, 2023, 15, 100195.
121 Spigliantini G, Fabi V, Corgnati S P.Energy Procedia, 2017, 134, 376.
122 Yuk H, Choi J Y, Kim Y U, et al.Building and Environment, 2023, 230, 110004.
123 Johansson P, Geving S, Hagentoft C, et al.Building and Environment, 2014, 79, 31.
124 Geng Y, Han X, Zhang H, et al.Journal of Building Engineering, 2021, 33, 101853.
125 Katsura T, Miyata T, Memon S, et al.Energy Reports, 2023, 9, 1071.
126 Yang Z, Katsura T, Aihara M, et al.Energies, 2017, 10(12), 2108.
127 Johansson P, Adl-Zarrabi B, Sasic K A.Energy and Buildings, 2016, 130, 488.
128 Gonçalves M, Serra C, Simões N, et al.Journal of Building Engineering, 2021, 44, 103301.
129 Fantucci S, Garbaccio S, Lorenzati A, et al.Energy and Buildings, 2019, 196, 269.
130 Chen X, Li R, Xu K, et al.Guangdong Architecture Civil Engineering, 2023, 30(5), 48 .
131 Thiessen S, Knabben F, Melo C, et al.International Journal of Refrigeration, 2018, 96, 10.
132 Xu X F, Zhang X L, Liu S.International Journal of Energy Research, 2018, 42(14), 4429.
133 Singh H, Hadavinia H, Kerridge D, et al. In:12th International Vacuum Insulation Symposium (IVIS2015). Nanjing, China, 2015.
[1] 李艺, 刘敬肖, 史非, 杨大毅, 田紫薇, 王美玉, 万佳翔, 陈超凡, 吕振杰. 基于草酸热还原制备CsxWO3用于高效近红外屏蔽薄膜研究[J]. 材料导报, 2025, 39(7): 23060135-8.
[2] 王成海, 韩昌报, 崔雅楠, 严辉, 蒋荃. 高孔隙率水化硅酸钙的合成及对水泥基复合材料保温隔热性能的影响[J]. 材料导报, 2025, 39(13): 24060010-7.
[3] 李仁豪, 鲍艳, 赵海航. 聚酰亚胺类复合隔热材料的研究进展[J]. 材料导报, 2025, 39(10): 24030238-10.
[4] 赵思名, 郭震宇, 黄娅, 蓝帆, 赵卓菁, 李润, 张如范. 面向建筑节能的新型光热调控技术:主动电致变色与被动辐射制冷[J]. 材料导报, 2025, 39(1): 24100008-18.
[5] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[6] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[7] 于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
[8] 马晓勇, 陈叔平, 金树峰, 朱鸣, 王洋, 熊珍艳, 吴慧敏, 于洋, 王鑫. 低温容器用多层绝热材料的绝热性能研究进展[J]. 材料导报, 2024, 38(1): 22050027-11.
[9] 刘奎周, 张建仁, 田湘, 黄敦文, 彭晖. 利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能[J]. 材料导报, 2023, 37(23): 22070288-8.
[10] 韩风雷, 刘艳, 刘涛, 张学富, 吕洋, 扎西尼玛. SiO2气凝胶对超细水泥基材料性能影响的试验研究[J]. 材料导报, 2023, 37(15): 22080137-7.
[11] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[12] 尹雅, 李庆文, 乔兰, 张庆龙. SiC对能源桩混凝土传热与力学性能的影响[J]. 材料导报, 2023, 37(10): 21060198-5.
[13] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[14] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[15] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed