Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24040133-11    https://doi.org/10.11896/cldb.24040133
  高分子与聚合物基复合材料 |
天然高分子络合无机纳米复合抗菌剂研究进展
谢雨兮1, 吴双双1, 方晓阳1,2,*, 徐伟1,2,*
1 南京林业大学家居与工业设计学院,南京 210037
2 南京林业大学林业资源高效加工利用协同创新中心,南京 210037
Research Progress of Natural Macromolecule Complex Inorganic Nanocomposite Antimicrobial Agents
XIE Yuxi1, WU Shuangshuang1, FANG Xiaoyang1,2,*, XU Wei1,2,*
1 College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China
2 Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 34303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,新型抗菌材料的开发受到了各领域的广泛关注,抗菌技术的应用与人类的健康生活息息相关,具有巨大的发展前景。无机纳米抗菌剂是目前研究最为广泛的抗菌剂之一,但无机纳米抗菌剂因易团聚、分散性差等问题影响了进一步的实际应用。天然高分子木质素、壳聚糖和聚多巴胺因其独特的物理化学特性,具有良好的生物兼容性、可降解性和安全性,在抗菌领域展现出巨大的潜力。本文首先概述了木质素、壳聚糖和聚多巴胺的结构与功能;其次,讨论了其抗菌的作用机制;然后,综述了其与无机纳米抗菌剂络合的新型复合抗菌剂的研究进展;最后,对未来的发展方向提出展望,为抗菌材料的进一步研究与应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢雨兮
吴双双
方晓阳
徐伟
关键词:  木质素  壳聚糖  聚多巴胺  无机纳米抗菌剂  抗菌性能    
Abstract: In recent years, the development of new antibacterial materials has been widely concerned in various fields, and the application of antibacte-rial technology is closely related to human health and life, and has great development prospects. Inorganic nano antibacterial agents are one of the most widely studied antibacterial agents at present, but the inorganic nano antibacterial agents are easy to agglomerate, poor dispersion and other problems affect the further practical application. Due to their unique physical and chemical properties, natural macromolecule lignin, chitosan and polydopamine have good biocompatibility, degradability and safety, and show great potential in the field of antibacterial. In this paper, the structure and function of lignin, chitosan and polydopamine are reviewed. Secondly, the antibacterial mechanism is discussed. Then, the research progress of the new composite antibacterial agent complex with inorganic nano antibacterial agent is reviewed. Finally, the future development direction is proposed, which provides a reference for the further research and application of antibacterial materials.
Key words:  lignin    chitosan    polydopamine    inorganic nano antibacterial agent    antimicrobial property
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TB332  
基金资助: 江苏高校“青蓝工程”;教育部产学合作协同育人项目(202101148004)
通讯作者:  *方晓阳,博士,南京林业大学家居与工业设计学院讲师,主要从事竹基生物质复合材料和绿色低碳产品设计及应用研究。fangxiaoyang@njfu.edu.cn
徐伟,博士,南京林业大学家居与工业设计学院教授,博士研究生导师。目前主要从事绿色家居及装饰技术和家具智能制造技术等研究。xuwei@njfu.edu.cn   
作者简介:  谢雨兮,南京林业大学家居与工业设计学院硕士研究生,目前主要研究领域为家具设计与工程和生物基复合材料。
引用本文:    
谢雨兮, 吴双双, 方晓阳, 徐伟. 天然高分子络合无机纳米复合抗菌剂研究进展[J]. 材料导报, 2025, 39(13): 24040133-11.
XIE Yuxi, WU Shuangshuang, FANG Xiaoyang, XU Wei. Research Progress of Natural Macromolecule Complex Inorganic Nanocomposite Antimicrobial Agents. Materials Reports, 2025, 39(13): 24040133-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040133  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24040133
1 Zhang T X, Wang Y Q, Liu X Y, et al.Guangzhou Chemical Industry, 2023, 51(1), 20 (in Chinese).
张天祥, 汪园青, 刘昕宇, 等. 广州化工, 2023, 51(1), 20.
2 Long S Y, Zeng S, Huang X N, et al.Engineering Plastics Application, 2024, 52(2), 21 (in Chinese).
龙思宇, 曾舒, 黄晓枭, 等. 工程塑料应用, 2024, 52(2), 21.
3 Jin J, Zhang F.Acta Materiae Compositae Sinica, 2024, 41(7), 41(7), 3442 (in Chinese).
4 Ren L T, Xu Y Y, Ye Z X, et al.Materials Reports, 2023, 37(S2), 337 (in Chinese).
任蓝图, 许雨茵, 叶芷欣, 等. 材料导报, 2023, 37(S2), 337.
5 Zhao D X, Yang X X, Lang Y M.The Food Industry, 2021, 42(7), 204 (in Chinese).
赵冬雪, 杨晓溪, 郎玉苗. 食品工业, 2021, 42(7), 204.
6 Wei Y B, Wang A Q.Shandong Chemical Industry, 2022, 51(11), 113.
魏元博, 王安琪. 山东化工, 2022, 51(11), 113.
7 Wang J, Ye Y Q, Li Y, et al.Acta Chimica Sinica, 2022, 80(9), 1338 (in Chinese).
王洁, 叶雨晴, 李源, 等. 化学学报, 2022, 80(9), 1338.
8 Gao G, Jiang Z, Hu C.Frontiers in Chemistry, 2021, 9, 759512.
9 Ali N, Ali F, Saeed S, et al.Journal of Applied Polymer Science, 2021, 138 (24), 50646.
10 Jiang B, Jiao H, Guo X, et al.Advanced Science, 2023, 10(9), 2206055.
11 Deng W, Feng Y, Fu J, et al.Green Energy & Environment, 2023, 8(1), 10.
12 Zhou Y J, Jia L, Yuan H L, et al.New Chemical Materials, 2024, 52(4), 1 (in Chinese).
周逸君, 贾璐, 袁豪黎, 等. 化工新型材料, 2024, 52(4), 1.
13 Yang J, Ching Y C, Chuah C H.Polymers, 2019, 11(5), 751.
14 Jiang B, Jin Y C.Acta Materiae Compositae Sinica, 2022, 39(7), 3059 (in Chinese).
姜波, 金永灿. 复合材料学报, 2022, 39(7), 3059.
15 Karimah A, Ridho M R, Munawar S S, et al.Journal of Materials Research and Technology, 2021, 13, 2442.
16 Schneider W D H, Dillon A J P, Camassola M.Biotechnology Advances, 2021, 47, 107685.
17 Österberg M, Sipponen M H, Mattos B D, et al.Green Chemistry, 2020, 22(9), 2712.
18 Xie Y. Study on antibacterial activity of lignin and ways to improve it. Master’s Thesis, Tianjin University of Science & Technology, China, 2020 (in Chinese).
夏悦. 木质素的抑菌活性及其提高途径研究. 硕士学位论文, 天津科技大学, 2020.
19 Chen J, An L, Bae J H, et al.Industrial Crops and Products, 2021, 173, 114102.
20 Das A K, Mitra K, Conte A J, et al.International Journal of Biological Macromolecules, 2024, 261(2), 129753.
21 Gao H, Sun M, Duan Y, et al.International Journal of Biological Macromolecules, 2023, 246, 125596.
22 Okonkwo C E, Hussain S Z, Onyeaka H, et al.Industrial Crops and Products, 2023, 206, 117696.
23 Li K, Zhong W, Li P, et al.International Journal of Biological Macromolecules, 2023, 252, 126281.
24 Wang Y, Wang H, Li Z, et al.Journal of Colloid and Interface Science, 2021, 594, 316.
25 Wang S, Zhang J B, Gan X Q, et al.Applied Chemical Industry, https://doi.org/10.16581/jcnki.issn1671-3206.20240004.001 (in Chinese).
王硕, 张健本, 甘心权, 等. 应用化工, https://doi.org/10.16581/j.cnki.issn1671-3206.20240004.001.
26 Sánchez-López E, Gomes D, Esteruelas G, et al.Nanomaterials, 2020, 10(2), 292.
27 Nisar P, Ali N, Rahman L, et al.Journal of Biological Inorganic Chemistry, 2019, 24, 929.
28 Wang Y, Li Z, Yang D, et al.Journal of Colloid and Interface Science, 2021, 583, 80.
29 Zhang L, Lu H, Chu J, et al.ACS Sustainable Chemistry & Engineering, 2020, 8(33), 12655.
30 Yang W, Xu F, Ma X, et al.Materials Science and Engineering:C, 2021, 129, 112385.
31 Marković D, Petkovska J, Mladenovic N, et al.Journal of Applied Polymer Science, 2023, 140(19), e53823.
32 Wang K, Liu K, Dai L, et al.International Journal of Biological Macromolecules, 2024, 258, 129046.
33 Tran N T, Ha D, Pham L H, et al.International Journal of Biological Macromolecules, 2023, 230, 123124.
34 Wang Y, Liu J, Wang T, et al.Food Packaging and Shelf Life, 2023, 40, 101167.
35 Yang J, Dai J, Liu X, et al.International Journal of Biological Macromolecules, 2022, 210, 85.
36 Malecki P H, Bejger M, Rypniewski W, et al.International Journal of Molecular Sciences, 2020, 21(8), 2892.
37 Kou S G, Peters L, Mucalo M.Carbohydrate Polymers, 2022, 282, 119132.
38 Li J, Zhuang S.European Polymer Journal, 2020, 138, 109984.
39 Yang Y, Aghbashlo M, Gupta V K, et al.International Journal of Biolo-gical Macromolecules, 2023, 236, 123954.
40 Perinelli D R, Fagioli L, Campana R, et al.European Journal of Pharmaceutical Sciences, 2018, 117, 8.
41 Yahyaei M, Mehrnejad F, Naderi-Manesh H, et al.Carbohydrate Polymers, 2018, 191, 191.
42 Wu M, Long Z, Xiao H, et al.Carbohydrate Research, 2016, 434, 27.
43 Zhou X L, Wang R Q, Chen G L, et al.Chemical Journal of Chinese Universities, 2024, 45(3), 7 (in Chinese).
周晓龙, 汪瑞琪, 陈国丽, 等. 高等学校化学学报, 2024, 45(3), 7.
44 Sainz-García A, Toledano P, Muro-Fraguas I, et al.International Journal of Infectious Diseases, 2022, 123, 145.
45 Lou C W, Chen A P, Lic T T, et al.Materials Letters, 2014, 128, 248.
46 Ke C L, Deng F S, Chuang C Y, et al.Polymers, 2021, 13(6), 904.
47 Nandana C N, Christeena M, Bharathi D.Journal of Cluster Science, 2021, 1.
48 Bharathi D, Ranjithkumar R, Nandagopal J G T, et al.Environmental Research, 2023, 238, 117109.
49 Cao S, Bi Z, Li Q, et al.Carbohydrate Polymers, 2023, 305, 120545.
50 Wang X, Xuan S, Ding K, et al.Food Chemistry, 2024, 448, 139126.
51 Hui A, Yan R, Wang W, et al.Carbohydrate Polymers, 2020, 247, 116685.
52 Halarnekar D, Ayyanar M, Gangapriya P, et al.International Journal of Biological Macromolecules, 2023, 242, 124764.
53 Seraj A, Allafchian A, Karimzadeh F, et al.Environmental Science and Pollution Research, 2023, 30(40), 92611.
54 Singh S, Goel T, Singh A, et al.Artificial Cells Nanomedicine and Biotechnology, 2024, 52(1), 46.
55 Imran M, Haider A, Shahzadi I, et al.Journal of Environmental Chemical Engineering, 2023, 11(3), 110088.
56 Hartati H, Subaer S, Hasri H, Wibawa T, et al.Nanomaterials, 2022, 12, 3652.
57 Xu X, Wang Q, Chang Y, et al.ACS Applied Materials & Interfaces, 2022, 14(36), 41400
58 Wen T, Long J, Lu G, et al.Particle & Particle Systems Characterization, 2023, 40(9), 2300033.
59 Lupínková S, Kaimlová M, Kormunda M, et al.Surface and Interface Analysis, 2021, 53(1), 108.
60 Zhang C, Xiang L, Zhang J, et al.Chemical Science, 2022, 13(6), 1698.
61 Qu L Y, Liu J L, Liu Y Y, et al.Progress in Organic Coatings, 2023, 176, 107397.
62 Guo T T, Mu R, Ren H H, et al.Shandong Chemical Industry, 2023, 52(11), 103 (in Chinese).
郭亭亭, 慕蓉, 任浩浩, 等. 山东化工, 2023, 52(11), 103.
63 Rao K M, Narayanan K B, Uthappa U T, et al.Pharmaceutics, 2022, 14(5), 1028.
64 Yang W, Liu W, Zheng M, et al.Journal of Applied Polymer Science, 2023, 140(45), e54654.
65 Li B, Gao X, Qu J, et al.International Journal of Molecular Sciences, 2022, 23(14), 7712.
66 He X, Obeng E, Sun X, et al.Materials Today Bio, 2022, 15, 100329.
67 Yang P, Zhang S, Chen X, et al.Materials Horizons, 2020, 7(3), 746.
68 Fu Y, Yang L, Zhang J, et al.Materials Horizons, 2021, 8(6), 1618.
69 Guo H, Xia Y, Feng K, et al.International Journal of Nanomedicine, 2020, 3235.
70 Wang S, Zeng J, Li P, et al.Separation and Purification Technology, 2022, 301, 121955.
71 Chien H W, Chiu T H, Lee Y L.Langmuir, 2021, 37(26), 8037.
72 Gan D, Xing W, Jiang L, et al.Nature Communications, 2019, 10(1), 1487.
73 Liu Z, Liu T, Gu W, et al.Chemical Engineering Journal, 2022, 449, 137822.
74 Xiang J, Zhu R, Lang S, et al.Chemical Engineering Journal, 2021, 409, 128291.
75 Ding M, Zhang Y, Li X, et al.Small, 2024, 20, 2400927.
76 Wei Z, Li K, Wang S, et al.Frontiers in Bioengineering and Biotechnology, 2022, 10, 1056419.
77 Peng M, Zhang Q, Zhang M, et al.Materials Chemistry and Physics, 2023, 305, 127939.
78 Allehyani E S, Almulaiky Y Q, Al-Harbi S A, et al.Polymers, 2022, 14(18), 3794.
79 Guo Y, Tian Q, Wang T, et al.Journal of Colloid and Interface Science, 2023, 629, 535.
80 Hong G, Cheng H, Zhang K, et al. Journal of Cleaner Production, 2022, 366, 132835.
81 Zhou J, Wang B, Xu C, et al.Journal of Materials Research and Techno-logy, 2022, 18, 428.
82 Shao X, Wang J, Liu Z, et al.Frontiers of Chemical Science and Engineering, 2023, 17(10), 1544.
83 Li Z P, You S, Mao R, et al.Materials Today Bio, 2022, 15, 100264.
84 Han B, Liu F, Hu S, et al.Carbohydrate Polymers, 2024, 332, 121923.
85 Xu Y, Wang K, Zhao S, et al.Chemical Engineering Journal, 2022, 437, 135282.
86 Zhang Y, Wang Y, Li Z, et al.ACS Applied Bio Materials, 2022, 5(9), 4256.
87 Aradmehr A, Javanbakht V.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 600, 124952.
88 Liu J, Sipponen M H.Iscience, 2023, 26(10), 108058.
89 Wang C, Liu W, Cao H, et al.International Journal of Biological Macromolecules, 2022, 194, 58.
90 Tao G, Cai R, Wang Y, et al.Materials Science and Engineering:C, 2021, 119, 111597.
91 Roy S, Priyadarshi R, Rhim J W.Foods, 2021, 10(11), 2789.
[1] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[2] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[3] 杨水艳, 盛扬, 孙一新, 蔡仁钦, Mark Bradley, 张嵘. 基于丙烯酸-N-琥珀酰亚胺酯共聚物交联剂的壳聚糖水凝胶的生物相容性研究[J]. 材料导报, 2024, 38(12): 22120119-10.
[4] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[5] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[6] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[7] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[8] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[9] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[10] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[11] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[12] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[13] 任荣浩, 孙平, 王永光, 丁钊, 赵栋, 俞泽新. 壳聚糖在铝低压力化学机械抛光中的钝化作用及抛光行为研究[J]. 材料导报, 2023, 37(16): 22030222-6.
[14] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[15] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed