Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24040139-7    https://doi.org/10.11896/cldb.24040139
  高分子与聚合物基复合材料 |
典型糖醇类相变材料考虑加热时间和过热温度的结晶特性研究
库尔班江·乌丝曼1,2, 王天浩1, 史琳1, 戴晓业1,*
1 清华大学能源与动力工程系,北京 100084
2 新疆大学电气工程学院,乌鲁木齐 830046
Study on the Crystallization Characteristics of Typical Sugar Alcohol Phase Change Materials Considering Heating Duration and Superheating Temperature
WUSIMAN Kuerbanjiang1,2, WANG Tianhao1, SHI Lin1, DAI Xiaoye1,*
1 Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
2 School of Electrical Engineering, Xinjiang University, Urumqi 830046, China
下载:  全 文 ( PDF ) ( 9800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 糖醇类材料被认为是性能优异的中温相变材料(PCMs)而备受关注。研究糖醇类PCMs在不同储热温度和时间下的结晶特性变化规律,对评估储热系统在实际应用中的释热效果至关重要。然而,目前对这方面的研究还不够充分。本研究在氮气(N2)氛围下,分别采用非等温和等温测试方法,通过引入过冷度(ΔTsc)和释热率(HRR)两个参数,探究了赤藓糖醇、D-甘露醇和肌醇的结晶特性随过热温度和时间的变化规律。实验结果表明:在非等温测试中,赤藓糖醇、D-甘露醇和肌醇在70 ℃、25 ℃和15 ℃的过热度范围内,随着加热时间的延长,它们的过冷度均能保持相对稳定,分别约为70 ℃、46 ℃和37 ℃;其释热率在相应的过热度范围内随加热时间延长也能保持相对稳定,分别约为68%、91%和78%。等温测试结果进一步表明,在10 ℃过热度下,这些糖醇的过冷度随着加热时间的延长也能保持相对稳定,但相比于非等温测试显著降低,分别约为19.6 ℃、1.6 ℃和1.3 ℃。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
库尔班江·乌丝曼
王天浩
史琳
戴晓业
关键词:  糖醇  PCMs  结晶特性  过冷度  释热率    
Abstract: Sugar alcohols are widely regarded as high-performance medium-temperature phase change materials (PCMs) and have attracted significant attention. Investigating the crystallization behavior of sugar alcohol PCMs under varying heat storage temperatures and durations is crucial for assessing the heat release performance of thermal storage systems in practical applications. However, current research in this area remains insufficient. In this study, under a nitrogen (N2) atmosphere, non-isothermal and isothermal testing methods were employed. Two parameters, supercooling degree (ΔTsc) and heat release ratio (HRR), were introduced to investigate the crystallization behavior of erythritol, D-mannitol, and inositol as a function of superheating temperature and duration. The experimental results indicated that, during non-isothermal testing, the supercooling degrees of erythritol, D-mannitol, and inositol remained relatively stable at approximately 70 ℃, 46 ℃, and 37 ℃ within the degrees of superheating ranges of 70 ℃, 25 ℃, and 15 ℃, respectively, as heating duration increased. Their heat release ratios also remained relatively stable within the respective superheating ranges, approximately 68%, 91%, and 78%. The isothermal test results further showed that, at a degree of superheat of 10 ℃, the supercooling degrees of these sugar alcohols remained relatively stable over duration, although they were significantly lower than in the non-isothermal tests, at approximately 19.6 ℃, 1.6 ℃, and 1.3 ℃, respectively.
Key words:  sugar alcohols    PCMs    crystallization characteristic    supercooling degree    heat release ratio
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52176011);清华大学-山西清洁能源研究院创新种子基金
通讯作者:  *戴晓业,博士,清华大学能源与动力工程系助理研究员。目前主要从事储热技术、能源系统优化、制冷剂替代等方面的研究。daixy@mail.tsinghua.edu.cn   
作者简介:  库尔班江·乌丝曼,硕士。现为新疆大学电气工程学院讲师,并在清华大学能源与动力工程系攻读博士研究生,在史琳教授的指导下进行研究。目前主要从事相变储热技术方面的研究。
引用本文:    
库尔班江·乌丝曼, 王天浩, 史琳, 戴晓业. 典型糖醇类相变材料考虑加热时间和过热温度的结晶特性研究[J]. 材料导报, 2025, 39(13): 24040139-7.
WUSIMAN Kuerbanjiang, WANG Tianhao, SHI Lin, DAI Xiaoye. Study on the Crystallization Characteristics of Typical Sugar Alcohol Phase Change Materials Considering Heating Duration and Superheating Temperature. Materials Reports, 2025, 39(13): 24040139-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040139  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24040139
1 He Y L. Chinese Science Bulletin, 2016, 61(17), 1856 (in Chinese).
何雅玲. 科学通报, 2016, 61(17), 1856.
2 Xu Z Y, Wang R Z, Yang C. Energy, 2019, 176, 1037.
3 Steinmann W D, Bauer D, Jockenhfer H, et al. Energy, 2019, 183, 185.
4 Martín M. Computers & Chemical Engineering, 2022, 165, 107926.
5 El-Agouz S A, Zayed M E, Ghazala A M A, et al. Process Safety and Environmental Protection, 2022, 164, 595.
6 Du K, Calautit J, Eames P, et al. Renewable Energy, 2021, 168, 1040.
7 Nazir H, Batool M, Osorio F, et al. International Journal of Heat and Mass Transfer, 2019, 129, 491.
8 Barrio E, Godin A, Duquesne M, et al. Solar Energy Materials and Solar Cells, 2017, 159, 560.
9 Hérault D, Rodembusch F, Campo L, et al. Comptes Rendus Chimie, 2010, 13(5), 566.
10 Beaupere N, Soupremanien U, Zalewski L. Thermochimica Acta, 2018, 670, 184.
11 Kaizawa A, Maruoka N, Kawai A, et al. Heat Mass Transfer, 2008, 44, 763.
12 Miro L, Barreneche C, Ferrer G, et al. Thermochimica Acta, 2016, 627, 39.
13 Singh D K, Suresh S, Singh H, et al. Applied Thermal Engineering, 2017, 110, 564.
14 Nomura T, Zhu C, Sagara A, et al. Applied Thermal Engineering, 2015, 75, 481.
15 Shao X, Yang S, Wang C, et al. Energy, 2020, 209, 118483.
16 Solé A, Neumann H, Niedermaier S, et al. Solar Energy Materials and Solar Cells, 2014, 126, 125.
17 Neumann H, Niedermaier S, Gschwander S, et al. Thermochimica Acta, 2018, 660, 134.
18 Neumann H, Burger D, Taftanazi Y, et al. Solar Energy Materials and Solar Cells, 2019, 200, 109913.
19 Yang S, Shao X F, Fan L W. CIESC Journal, 2020, 71(2), 864 (in Chinese).
杨生, 邵雪峰, 范利武. 化工学报, 2020, 71(2), 864.
20 Zeng J, Zhou L, Zhang Y, et al. Journal of Thermal Analysis and Calorimetry, 2017, 129(3), 1291.
21 Shao X, Wang C, Yang Y, et al. Energy, 2018, 160, 1078.
22 Liu C, Cheng Q, Du P, et al. Journal of Energy Storage, 2023, 65, 107325.
23 Yin S, Han J, Zhang C, et al. Journal of Thermal Science, 2023, 32(6), 2093.
24 Salyan S, Suresh S. Advanced Powder Technology, 2018, 29(12), 3183.
25 Zhang Y, Jiang Y, Jiang Y. Measurement Science and Technology, 1999, 10(3), 201.
26 Luna A M P, Neumann H, Gschwander S. Applied Sciences, 2021, 11(12), 5448.
27 Wusiman K, Wang T H, Dai X Y, et al. Journal of Engineering Thermophysics, 2024, 45(8), 2223 (in Chinese).
库尔班江·乌丝曼, 王天浩, 戴晓业, 等. 工程热物理学报, 2024, 45(8), 2223.
28 Ma C, Wang Y, Xie S, et al. Journal of Energy Storage, 2023, 73, 108889.
29 Liu Y, Deng Y, Zheng J, et al. Solar Energy Materials and Solar Cells, 2022, 248, 112031.
30 Yuan M, Ren Y, Xu C, et al. Renewable Energy, 2019, 136, 211.
31 Adachi T, Daudah D, Tanaka G. ISIJ International, 2014, 54(12), 2790.
[1] 张钰禄, 胡谦, 叶倩, 吴佳喜, 李秋实, 苏柑锚, 杜官本, 徐开蒙. 甲壳素/丝素蛋白复合薄膜结晶特性变化研究[J]. 材料导报, 2022, 36(11): 20100142-6.
[2] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[3] 张正飞, 秦紫依, 李勇, 王毅. 相变材料的过冷现象及其抑制方法的研究进展[J]. 材料导报, 2019, 33(21): 3613-3619.
[4] 王杰, 孙晓刚, 陈珑, 邱治文, 蔡满园, 李旭, 陈玮. 利用二硫苏糖醇夹层抑制锂硫电池的穿梭效应[J]. 《材料导报》期刊社, 2018, 32(7): 1079-1083.
[5] 董洁, 袁守谦, 杨双平, 孙永涛, 高海龙, 陈春江. 电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 44-47.
[6] 赵思勰,晏华,汪宏涛,李云涛,余荣升,杨健健. 月桂酸/膨胀珍珠岩复合相变材料的制备与热性能研究*[J]. 材料导报编辑部, 2017, 31(10): 107-111.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed