Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 44-47    https://doi.org/10.11896/j.issn.1005-023X.2017.020.010
  材料研究 |
电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*
董洁1,2, 袁守谦1,2, 杨双平1,2, 孙永涛3, 高海龙1, 陈春江4
1 西安建筑科技大学冶金工程学院,西安 710055;
2 陕西省冶金工程技术研究中心,西安 710055;
3 山西华翔集团,临汾 041600;
4 中冶集团陕西压延设备厂,富平 711700
Effects of Electric Pulse on the Solidification Structure and Properties of Cast High Toughness Ductile Iron
DONG Jie1,2, YUAN Shouqian1,2, YANG Shuangping1,2, SUN Yongtao3, GAO Hailong1, CHEN Chunjiang4
1 School of Metallurgical Engineering, Xi’an University of Architecture & Technology;
2 Research Centre of Metal lurgical Engineering & Technology of Shaanxi Province, Xi’an 710055;
3 Shanxi Hua-xiang Group Co., Ltd., Linfen 041600;
4 MCC-SFRE Heavy Industry Equipment Co., LTD, Fuping 711700
下载:  全 文 ( PDF ) ( 2095KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对铸态高韧性球墨铸铁QT400-18的凝固过程进行电脉冲处理,电脉冲参数为电压2 600 V,频率0.88 Hz,电容200 μF,处理时间15 min。通过对比试验可知:电脉冲处理可使铸铁的过冷度相比未处理的升高12 K, 改善了石墨形核和生长的动力学条件,从而使球状石墨的粒径减小,石墨球数量增加。铸铁经过电脉冲处理,球化率由未处理的平均80%提高到平均91%,石墨球数由平均172/mm2提高到209/mm2,石墨不易变态生长,圆整度得到改善。同时,球墨铸铁的凝固组织得到了改善,铁素体数量增加,达到83%,相比未电脉冲处理的试样提高了26.6%,铁素体晶粒小于未处理试样,基体中分布的珠光体数量和片层间距减少,在抗拉强度符合要求的条件下,伸长率提高了4.89%,-233 K的冲击功Akv提高了3.56 J。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董洁
袁守谦
杨双平
孙永涛
高海龙
陈春江
关键词:  铸态高韧性球墨铸铁  QT400-18  电脉冲  过冷度  球化率  铁素体    
Abstract: Cast high toughness ductile iron QT400-18 was treated by the electrical pulse. The electric pulse parameters were voltage 2 600 V, frequency 0.88 Hz, capacitance 200 μF and the processing time 15 min. The results showed that the undercooling degrees of cast iron specimen treated by the electrical pulse increased 12 K comparing with the untreated one, for improving the graphite nucleation and the dynamic conditions of growth. Then the size of spherical graphite decreased and the number of nodular graphite increased. After the electric pulse treatment, the nodularity was increased from an average of 80% to 91% and the spherical graphite number was increased from 172 /mm2 to 209 /mm2. The graphite was not easy to abnormal growth and the roundness was improved. At the same time,the solidification structure of nodular cast iron has been changed,with the ferrite number increased,83%,compared to untreated specimen increasing 26.6%.The grain size of ferrite was less than that of untreated and the number and interlayer spacing of pearlite in the matrix decreased. The tensile strain increased by 4.89% and the impact work Akv at -233 K increased by 3.56 J.
Key words:  cast high toughness ductile iron    QT400-18    electric pulse    undercooling    nodularity    ferrite
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TG143.5  
基金资助: *西安市技术转移促进工程项目(CX1250⑤)
作者简介:  董洁:女,1968年生,硕士,副教授,主要研究方向为金属凝固组织 E-mail:dongjiexyz@163.com
引用本文:    
董洁, 袁守谦, 杨双平, 孙永涛, 高海龙, 陈春江. 电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 44-47.
DONG Jie, YUAN Shouqian, YANG Shuangping, SUN Yongtao, GAO Hailong, CHEN Chunjiang. Effects of Electric Pulse on the Solidification Structure and Properties of Cast High Toughness Ductile Iron. Materials Reports, 2017, 31(20): 44-47.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.010  或          https://www.mater-rep.com/CN/Y2017/V31/I20/44
1 Ma Jingzhong, Ding Jianzhong, You Qiguang, et al. Research and application of 400-18A ferrite ductile iron with high toughness at low temperature[J]. Foundry,2012,61 (8):856(in Chinese).
马敬仲,丁建中,尤其光,等.超低温高韧性球墨铸铁QT400-18AL的研究与应用[J]. 铸造,2012,61 (8):856.
2 Mesra A K. A novel solidification technique of metals and alloys under the influence of applied orienta[J]. Metall Trans A, 1985,16 (7):1354.
3 Barnak J P, Sprecher A F, Conrad H. Colony(grain) size reduction in eutectic pb-sn castings by electroplusing[J]. Scripts Metallurgi-caet Mater, 1995,32(6):879.
4 Masayuki Nakada, Yuh Shiohara, Merton C Flemings. Modification of solidification structures by pulse electric discharging [J]. ISIJ Int, 1990,30(1):27.
5 Gao M,He G H,Yang F,et al. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy[J].Mater Sci Eng A, 2002,337(1-2):110.
6 Liao Xiliang, Zhai Qijie, Luo Jun, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater,2007,55(9):3103.
7 Wang Jianzhong, Qi Jingang, Zhao Zuofu, et al. Effects of electric pulse modification on liquid structure of Al-5%Cu alloy[J]. Trans Nonferrous Met Soc China, 2013,23(9):2792.
8 Zhang Xifeng,Yuan Shouqian,Wei Yingjuan, et al. Influence of pulse current treatment method on solidified structure of a 45 steel[J]. Special Steel, 2009,30(1):10(in Chinese).
张西锋, 袁守谦, 魏颖娟, 等. 脉冲电流的不同处理方式对45钢凝固组织的影响[J]. 特殊钢,2009,30(1):10.
9 Tang Yong, Wang Jianzhong, Cang Daqiang, et al. Improvement of T8 steel solidification structure by electropulse treatment[J]. J University of Science and Technology Beijing, 2000,22(4):307(in Chinese).9 唐勇,王建中,苍大强, 等. 电脉冲作用下T8钢凝固组织的改变[J].北京科技大学学报,2000,22(4):307.
10Li Lingzhen, Zong Yanbing, Cui Heng, et al. Electropulse effect on macro solidification structure of hrb335 steel[J]. J University of Science and Technology Beijing, 2004,26(5):478(in Chinese).
李玲珍, 宗燕兵, 崔衡, 等. 电脉冲改善HRB335钢宏观凝固组织的作用[J]. 北京科技大学学报,2004,26(5):478.
11Fan Jinhui, Li Renxing, Huo Xu, et al. Effects of pulse electric current with various parameters on solidification structure of Cr18Ni9Ti stainless steel[J]. Foundry Technology, 2003,24(6):534.
范金辉, 李仁兴, 侯旭. 不同参数脉冲电流对不锈钢Cr18Ni9Ti凝固组织的影响[J].铸造技术,2003,24(6):534.
12Li Jianming, Li Shengli,Li Jin, et al. Modification of solidification structure by pulse electric discharging[J]. Scripta Metallurgica et Materialia, 1994,31 (12):1691.
13Conrad H. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid[J]. Mater Sci Eng A,2000,287(2):205.
14Margerie J C. The notion of heredity in cast iron[J]. Metall Cast Iron,1974,15:546.
15Kang H S, Yoon W Y, Kim K H, et al. Microstructure selections in the undercooled hypereutectic Al-Si alloys[J]. Mater Sci Eng A, 2005,404 (1-2):117.
16Mueller B, Perepezko J. The undercooling of aluminum[J]. Metall Mater Trans A, 1991,22(1):1143.
17Yan Hongchun, He Guanhu, Zhou Benlian, et al. The influence of pulse electric discharging on solidified structure of Sn-10%Pb alloy[J]. Acta Metall Sin, 1997,33(4):352(in Chinese).
鄢红春,何冠虎,周本濂,等.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报,1997,33(4):352.
[1] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[2] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[3] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[4] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[5] 杨道宽, 仇念双, 左小伟. 铁素体耐热钢中碳化物对NiAl析出相及力学性能的影响[J]. 材料导报, 2023, 37(17): 22030246-8.
[6] 赵嘉豪, 庞玉华, 孙琦, 牛犇, 刘东, 张喆. 剧烈扭转压缩轧制45钢超细晶棒组织演变机理[J]. 材料导报, 2023, 37(15): 22010069-5.
[7] 王艺橦, 潘栋, 侯华兴, 郭庆涛, 李天怡, 厉文墨, 肖玉宝, 江坤. 高能电脉冲处理对金属材料强化和增韧作用影响的研究新进展[J]. 材料导报, 2022, 36(Z1): 21080093-7.
[8] 李秋平, 张庆军, 朱立光. 次生针状铁素体激发形核行为研究[J]. 材料导报, 2022, 36(Z1): 21040258-5.
[9] 杨宇龙, 贾潇, 朱伏先, 王平. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 20060056-11.
[10] 董志海, 李逸文, Aleksandr Babkin, 常云龙. 铁素体不锈钢焊缝晶粒细化技术的研究现状[J]. 材料导报, 2022, 36(21): 21040102-10.
[11] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[12] 白慧怡, 计云萍, 李一鸣, 任慧平. 添加Ti对Fe-4%Si合金凝固组织的影响及机理[J]. 材料导报, 2021, 35(20): 20119-20123.
[13] 王昕宇, 徐春, 黎雨, 庞灵欢, 王斌君, 陈建斌. 电脉冲拉伸下5052铝合金的变形行为及微观组织和织构演变[J]. 材料导报, 2020, 34(24): 24097-24103.
[14] 牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
[15] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed