Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 39-43    https://doi.org/10.11896/j.issn.1005-023X.2017.020.009
  材料研究 |
镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*
张春芝, 孔令亮, 李辉平
山东科技大学材料科学与工程学院,青岛 266590
Improved Corrosion Resistance of Powder Metallurgical Al94.5Cu4Mg1.5 by Nickel Addition
ZHANG Chunzhi, KONG Lingliang, LI Huiping
College of Materials Science and Engineering,Shandong University of Science and Technology, Qingdao 266590
下载:  全 文 ( PDF ) ( 1754KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过常规粉末冶金工艺制备了Al94.5-xCu4Mg1.5Nix(x=0、2、4、6、8(%,质量分数))试样,研究了不同Ni含量试样在3.5%NaCl溶液中的耐腐蚀性能。利用X射线衍射(XRD)技术分析了试样烧结后的物相组成,通过电化学实验和失重腐蚀实验分析得到了试样的腐蚀数据,利用扫描电子显微镜(SEM)观察了试样的腐蚀形貌,并通过能谱仪(EDS)进行了微区成分分析。研究结果表明:烧结反应进行良好,Ni在烧结过程中可与Al反应生成金属间化合物Al3Ni2,铝基体在3.5%NaCl溶液中发生点蚀腐蚀,Ni的加入能够提高铝基体的腐蚀电位,减小腐蚀电流,使得基体的腐蚀程度减轻,材料的耐腐蚀性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张春芝
孔令亮
李辉平
关键词:  粉末冶金  Al-Cu-Mg合金  镍添加  耐腐蚀性能    
Abstract: The present paper aims to investigate the influence of Ni content on the corrosion behavior (in 3.5% NaCl solution) of Al-Cu-Mg alloys whose nominal compositions are Al94.5-xCu4Mg1.5Nix(x=0, 2, 4, 6, 8(wt%)), prepared by the conventional powder metallurgy process. Electrochemical test and weight loss experiment were carried out, and the phase composition, corrosion morphology and selected-area element analysis of the sintered samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results showed that the sintered samples possessed excellent inter-particle bonding. An intermetallic compound Al3Ni2 can be generated from Ni and Al in the sintering process. Pitting corrosion occurred in the Al-Cu-Mg matrix immersed in 3.5% NaCl solution. Ni addition can raise the corrosion potential of Al-Cu-Mg matrix, inhibit the corrosion current, thus mitigating the materia’s corrosion, and improving the corrosion resistance.
Key words:  powder metallurgy    Al-Cu-Mg alloy    nickel addition    corrosion resistance
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TF125  
基金资助: *国家自然科学基金(51575324);山东省高等学校科技计划项目(J17KA019)
作者简介:  张春芝:通讯作者,女,1978年生,博士,讲师,从事铝基粉末冶金、非晶合金制备及性能研究 E-mail:mse201109@126.com 李辉平:通讯作者,男,1972年生,教授,从事硼钢热冲压技术、数值模拟技术及工程优化研究 E-mail:lihuiping@sdu.edu.cn
引用本文:    
张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
ZHANG Chunzhi, KONG Lingliang, LI Huiping. Improved Corrosion Resistance of Powder Metallurgical Al94.5Cu4Mg1.5 by Nickel Addition. Materials Reports, 2017, 31(20): 39-43.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.009  或          https://www.mater-rep.com/CN/Y2017/V31/I20/39
1 Jin Peng, Liu Yue, Li Shu, et al. Aerospace applications of particulate reinforced aluminum matrix composites[J]. Mater Revi:Rev, 2009,23(6):24(in Chinese).
金鹏, 刘越, 李曙, 等. 颗粒增强铝基复合材料在航空航天领域的应用[J]. 材料导报:综述篇, 2009,23(6):24.
2 Wang Zhutang. Manufacture and performances of aluminum matrix composites used for automobile[J]. Light Alloy Fabrication Tech-nol, 2012,40(1):1(in Chinese).
王祝堂. 汽车铝基复合材料的制备与性能[J]. 轻合金加工技术, 2012,40(1):1.
3 Zhang Chunzhi, Bian Xiufang. Review of current situation and development trends of aluminum powder metallurgy alloys[J]. Special-cast Non-ferrous Alloys, 2008 (S1):55(in Chinese).
张春芝, 边秀房. 粉末冶金铝合金的研究现状和发展趋势[J]. 特种铸造及有色合金 2008,(S1):55.
4 Smith L J B, Corbin S F, et al. Development and processing of novel aluminum powder metallurgy materials for heat sink applications[J]. Metall Mater Trans A, 2014,45(2):980.
5 Hayashi T, Tokuoka T, Amano N. Development and productization of high performance powder metallurgy materials[J]. J Jpn Soc Powder Powder Metall, 2015,62(8):415.
6 Ma Guojun, Ding Tianyu, et al. Research on powder metallurgy processing for preparing Al matrix composites[J]. Mater Revi:Res, 2013,27(8):149(in Chinese).
马国俊, 丁田雨, 金培鹏, 等. 粉末冶金法制备铝基复合材料的研究[J]. 材料导报:研究篇, 2013,27(8):149.
7 Ge Sujing, Xu Cong, Wang Hongtao, et al. Microstructure and mechanical properties of Al-10Si alloys fabricated by powder metallurgy and casting[J]. Light Alloy Fabrication Technol, 2016,44(8):19(in Chinese).
葛素静, 徐聪, 王宏涛, 等. 粉末冶金和铸造Al-10Si合金的组织和力学性能对比[J]. 轻合金加工技术, 2016,44(8):19.
8 Wu Hao, Wu Xingping, Chen Minghai, et al. Preparation and frictional and abrasive characteristics of carbon nanotube reinforced aluminum-base composite[J]. Heat Treatment, 2013,28(5):44(in Chinese).
吴昊, 吴星平, 陈名海, 等. 碳纳米管增强铝基复合材料的制备及摩擦磨损性能[J]. 热处理, 2013,28(5):44.
9 Antony V K C, Selwin Rajadurai J, Sundararajan S. Performance enrichment on tribological characteristics of powder metallurgy processed aluminium particulate composites by inclusion of rutile(TiO2)[J]. J Mater Res, 2016,31(16):2445.
10Yildirim M, zyürek D, Gürü M. The effects of precipitate size on the hardness and wear behaviors of aged 7075 aluminum alloys produced by powder metallurgy route[J]. Arabian J Sci Eng, 2016,41(11):1.
11Bai Yun, Han Enhou, Tan Ruobing, et al. Research of the properties of the aluminium matrix composites[J]. Mater Protection, 2003,36(9):5(in Chinese).
白芸, 韩恩厚, 谭若兵, 等. 铝基复合材料性能的研究现状[J]. 材料保护, 2003,36(9):5.
12Zakaria H M. Microstructural and corrosion behavior of Al/SiC me-tal matrix composites[J]. Ain Shams Eng J, 2014,5(3):831.
13Paciej R C, Agarwala V S. Metallurgical variables influencing the corrosion susceptibility of a powder metallurgy SiCw/Al composite[J]. Corrosion, 1986,42(12):718.
14Miao Jiong. Effect of carbon, copper, nickel on properties and size changes of iron base P/M material[J]. Powder Metall Ind, 2005,15(3):10(in Chinese).
缪炯. 碳、铜、镍含量对铁基粉末冶金材料性能和尺寸变化的影响[J]. 粉末冶金工业, 2005,15(3):10.
15Yu Yalan, Yuan Nan, Jiang Danlu, et al. Effects of nickel and graphite content on new copper matrix P/M materials for pantograph slider[J]. Mater Sci Eng Powder Metall, 2015,20(3):419(in Chinese).
余亚岚, 袁楠, 江丹露, 等. 镍与石墨含量对新型铜基粉末冶金受电弓滑板材料性能的影响[J]. 粉末冶金材料科学与工程, 2015,20(3):419.
16Yao Guanxin, Niu Huawei. Effects of nickel on tribological wear properties of copper-based powder metallurgy friction material[J]. Hot Working Technol, 2016,45(8):121(in Chinese).
姚冠新, 牛华伟. 镍对铜基粉末冶金摩擦材料摩擦磨损性能的影响[J]. 热加工工艺, 2016,45(8):121.
17Cao Guoliang, Li Guoming, Chen Shan, et al. Comparison on pitting corrosion resistance of nickel and chromium in typical sea water resistance steels[J]. Acta Metall Sin, 2010,46(6):748(in Chinese).
曹国良, 李国明, 陈珊, 等. 典型耐海水腐蚀钢中Ni和Cr耐点蚀作用的比较[J]. 金属学报, 2010,46(6):748.
18杨熙珍, 杨武. 金属腐蚀电化学热力学电位-PH图及其应用[M]. 北京:化学工业出版社, 1991.
19黄建中, 左禹. 材料的耐蚀性和腐蚀数据[M]. 北京:化学工业出版社,2003.
20Wang Binbin, Wang Zhenxiao, Cao Gongwang, et al. Local corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China[J]. Acta Metall Sin, 2014,50(1):49(in Chinese).
王彬彬, 王振尧, 曹公望, 等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为[J]. 金属学报, 2014,50(1):49.
21Lu Bizhi, Long Jianzhan, et al. Study on the synthesis mechanism of Ni-Al intermetallic compound[J]. Cemented Carbide, 2011,28(5):276(in Chinese).
陆必志, 龙坚战, 等. Ni-Al金属间化合物合成机理的研究[J]. 硬质合金, 2011,28(5):276.
22Kimata T, Uenishi K, Ikenaga A, et al. Formation of thick NiAl composite coating on spheroidal graphite cast iron substrates by reaction synthesis processing[J]. Mater Trans, 2003,44(3):407.
23Krasnowski M, Gierlotka S, Kulik T. Nanocrystalline matrix Al3Ni2-Al-Al3Ni composites produced by reactive hot-pressing of milled powders[J]. Intermetallics, 2014,54(6):193.
24Rashidi A M, Amadeh A. A study on the aluminizing of electrodeposited nickel at 500 ℃[J]. Iranian J Mater Sci Eng, 2010,7(2):6.
25Yu Kun, Song Juemin, Chen Fuwen, et al. Effect of annealing on interfacial compound and property of Ni-Al composite strip[J]. J Central South University: Sci Technol, 2011,42(8):2297(in Chinese).
余琨, 宋觉敏, 陈福文, 等. 退火对层状复合Ni-Al双金属带界面化合物和性能的影响[J]. 中南大学学报:自然科学版, 2011,42(8):2297.
26RodríGuez J J S, Hernández F J S, González J E G. The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment[J]. Corros Sci, 2003,45(4):799.
27Wang Hongxing, Sheng Xiaobo, Chu Chenglin, et al. Aluminizing microstructure and its formation mechanism on electro-deposited nickel layer on copper matrix[J]. Chin J Nonferrous Metals, 2007,17(10):1616(in Chinese).
王红星, 盛晓波, 储成林, 等. Cu基体电镀Ni层表面渗Al组织及其形成机理[J]. 中国有色金属学报, 2007,17(10):1616.
28Ma Guoyin. Analysis of nickel and nickel alloy corrosion resistance [J]. Chem Equipment Technol, 2007,28(1):71(in Chinese).
马国印. 镍和镍合金耐腐蚀性分析[J]. 化工装备技术, 2007,28(1):71.
29Wang Liteng, Luo Wei, Gong Hailong. Influence of Ni addition on corrosion performance of medium-temperature filler metal with low Cu content for Al brazed joints[J]. J Mater Sci & Eng, 2014,32(4):516(in Chinese).
王丽腾, 罗伟, 宫海龙. 添加Ni元素对新型高强度低Cu中温铝合金钎料腐蚀性能的影响[J]. 材料科学与工程学报, 2014,32(4):516.
30Zhao Jialei, Jie Jinchuan, Chen Fei, et al. Effect of immersion Ni plating on interface microstructure and mechanical properties of Al/Cu bimetal[J]. Trans Nonferrous Metals Soc China, 2014,24(6):1659.
[1] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[2] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[3] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[4] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[5] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[6] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[7] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[8] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[9] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[10] 赵建华, 金荣华, 纪秀林, 段天泽, 庄曙东, 赵占西. Al含量对CoCrFeNiTi0.5高熵合金涂层耐冲蚀和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(17): 22030061-6.
[11] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[12] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[13] 颉芳霞, 黄家兵, 曹澍, 杨豪, 何雪明. 钛合金羟基磷灰石骨植入复合材料的研究进展[J]. 材料导报, 2023, 37(13): 21070222-7.
[14] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[15] 王帅, 郭二军, 冯义成, 付金来, 马宝霞, 赵思聪, 王雷. 冷轧变形对Al-Cu-Mg合金的显微组织与力学性能的影响[J]. 材料导报, 2023, 37(11): 21120197-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed