Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24100015-10    https://doi.org/10.11896/cldb.24100015
  无机非金属及其复合材料 |
团簇-晶核共组装亚纳米材料的研究进展
叶庆华1,2, 赵亚丽2, 蔡铭心2,3, 翟锦秀2, 曹行健2, 刘熙俊4, 何佩雷2,3,*
1 宁波大学材料科学与化学工程学院,浙江 宁波 315211
2 中国科学院宁波材料技术与工程研究所,全省先进燃料电池与电解池技术重点实验室,浙江 宁波 315201
3 中国科学院大学材料科学与光电技术学院,北京 100049
4 广西大学资源环境与材料学院,广西有色金属及特色材料加工重点实验室,南宁 530004
Research Progress on Sub-1 nm Materials Based on Cluster-Nuclei Co-assembly
YE Qinghua1,2, ZHAO Yali2, CAI Mingxin2,3, ZHAI Jinxiu2, CAO Xingjian2, LIU Xijun4, HE Peilei2,3,*
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
2 Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
3 College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
4 Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 46568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 亚纳米材料是指特征尺寸至少在一个维度上小于1 nm的材料。与传统纳米材料相比,亚纳米材料往往有特殊的性能,因而具有广阔的应用前景。清华大学的王训教授课题组实现了在良/不良溶剂体系中制备亚纳米材料,并提出了团簇-晶核共组装策略来实现亚纳米尺度上材料组分的调控。目前,该策略已发展成为制备各种组分亚纳米材料的普适方法。亚纳米材料因超高的比表面积和接近100%的表面原子暴露率而具有快速的电子/离子传输特性,在储能、催化和光热转化等领域中获得了广泛的应用。本文介绍了团簇-晶核共组装策略的概念和亚纳米材料的形成机理,同时,综述了近年来利用团簇-晶核共组装策略制备的亚纳米材料的研究现状,就其合成方法、结构等进行系统的介绍,讨论了这些亚纳米材料在储能、催化、光热转化、有机凝胶等方面的应用,最后提出了亚纳米材料目前面临的挑战和未来的研究方向,旨在为亚纳米材料的设计和精确合成提供新的视角。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶庆华
赵亚丽
蔡铭心
翟锦秀
曹行健
刘熙俊
何佩雷
关键词:  亚纳米  团簇-晶核共组装策略  储能  类高分子性质  光热转化    
Abstract: Sub-1 nm materials are defined as materials with characteristic dimensions smaller than 1 nm in at least one dimension. Compared to conventional nanomaterials, sub-1 nm materials often exhibit unique properties, leading to a wide range of potential applications. Professor Wang Xun’s research group at Tsinghua University has successfully developed methods for synthesizing sub-1 nm materials in good- and poor-solvent system and proposed a cluster-nuclei co-assembly strategy to achieve compositional control at the sub-1 nm scale. This strategy has evolved into a universal method for the synthesis of various sub-1 nm materials. Due to their exceptionally high specific surface area and nearly 100% surface atom exposure, sub-1 nm materials exhibit rapid electron/ion transport characteristics, making them widely applicable in energy storage, catalysis, and photothermal conversion. This review introduces the concept of the cluster-nuclei co-assembly strategy and elucidates the formation mechanisms of sub-1 nm materials. Additionally, it reviews the current research status of sub-1 nm materials synthesized through this strategy, systematically discussing their synthesis methods and structures, as well as their applications in energy storage, catalysis, and photothermal conversion. Finally, the challenges facing sub-1 nm materials today and future research directions are presented, aiming to provide new perspectives for the design and precise synthesis of sub-1 nm materials.
Key words:  sub-1 nm    cluster-nuclei co-assembly strategy    energy storage    macromolecule-like features    photothermal conversion
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  O61  
基金资助: 国家自然科学基金(22101289);中国科学院百人计划项目
通讯作者:  *何佩雷,博士,中国科学院宁波材料技术与工程研究所研究员、博士研究生导师。目前主要从事亚纳米材料自组装等方面的研究。hepeilei@nimte.ac.cn   
作者简介:  叶庆华,宁波大学材料科学与化学工程学院硕士研究生,在何佩雷研究员的指导下进行研究。目前主要研究领域为团簇-晶核共组装亚纳米材料的设计与应用。
引用本文:    
叶庆华, 赵亚丽, 蔡铭心, 翟锦秀, 曹行健, 刘熙俊, 何佩雷. 团簇-晶核共组装亚纳米材料的研究进展[J]. 材料导报, 2025, 39(12): 24100015-10.
YE Qinghua, ZHAO Yali, CAI Mingxin, ZHAI Jinxiu, CAO Xingjian, LIU Xijun, HE Peilei. Research Progress on Sub-1 nm Materials Based on Cluster-Nuclei Co-assembly. Materials Reports, 2025, 39(12): 24100015-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100015  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24100015
1 Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254(5036), 1312.
2 Ozin G A. Advanced Materials, 1992, 4(10), 612.
3 Kang J X, Yang X Y, Hu Q, et al. Chemical Reviews, 2023, 123(13), 8859.
4 Du Y P, Yin Z Y, Zhu J X, et al. Nature Communications, 2012, 3(1), 1177.
5 Rao P, Deng Y J, Fan W J, et al. Nature Communications, 2022, 13(1), 5071.
6 Rao P, Wu D X, Wang T J, et al. eScience, 2022, 2(4), 399.
7 Huang B, Ge Y Y, Zhang A, et al. Advanced Materials, 2023, 35(35), 2302233.
8 Wu H E, Fei G T, Gao X D, et al. China Powder Science and Technology, 2023, 29(5), 70 (in Chinese).
吴红娥, 费广涛, 高旭东, 等. 中国粉体技术, 2023, 29(5), 70.
9 Li T T, Deng Y T, Rong X, et al. SmartMat, 2023, 4(1), e1142.
10 Liu J W, Lee C, Hu Y, et al. SmartMat, 2023, 4(4), e1210.
11 Rao P, Wang T J, Li J, et al. Advanced Sensor and Energy Materials, 2022, 1(1), 100005.
12 Fu S H, Li Y, Wang Y Q. China Powder Science and Technology, 2024, 30(6), 27 (in Chinese).
付时辉, 李圆, 王延青. 中国粉体技术, 2024, 30(6), 27.
13 Chen Z X, Zhang Y T, Zhao C, et al. Advanced Materials, 2024, 36(15), 2310022.
14 Wang T, Chen W C, Liu Q D, et al. Angewandte Chemie International Edition, 2023, 62(51), e202314045.
15 Yu B, Wang X. ACS Nano, 2021, 15(11), 17247.
16 Zhang S M, Wang X. ACS Nano, 2023, 17(1), 20.
17 Ji Y Q, Yu Z H, Yan L G, et al. China Powder Science and Technology, 2023, 29(4), 100 (in Chinese).
纪玉祺, 于子函, 闫良国, 等. 中国粉体技术, 2023, 29(4), 100.
18 Chen Z X, Wu X X, Xiao L Y, et al. Nano Today, 2024, 54, 102126.
19 Niu J, Liang J J, Gao A, et al. Journal of Materials Chemistry A, 2019, 7(38), 21711.
20 Wei H S, Gao Z H, Cao L R, et al. Nanoscale, 2023, 15(3), 1422.
21 Liu H X, Wang W W, Fu X P, et al. Nature Communications, 2024, 15(1), 9126.
22 Yuan G B, Liu J L, Zhang Y. Batteries & Supercaps, 2024, 7(4), e202300623.
23 Moriai T, Tsukamoto T, Tanabe M, et al. Angewandte Chemie International Edition, 2020, 59(51), 23051.
24 Sonobe K, Tanabe M, Yamamoto K. ACS Nano, 2020, 14(2), 1804.
25 Hu S, Liu H L, Wang P P, et al. Journal of the American Chemical Society, 2013, 135(30), 11115.
26 Liu H L, Li H Y, He P L, et al. Small, 2016, 12(8), 1006.
27 Zhan C H, Xu Y, Bu L Z, et al. Nature Communications, 2021, 12(1), 6261.
28 Yu D D, Luo W, Gu H F, et al. Chemical Engineering Journal, 2023, 454, 139908.
29 Nie S Y, Wu L, Wang X. Journal of the American Chemical Society, 2023, 145(43), 23681.
30 Cheng X J, Zhang S M, Wang X. Nano Letters, 2021, 21(23), 9845.
31 Yuan G B, Ge H Y, Shi W X, et al. Angewandte Chemie International Edition, 2023, 62(39), e202309934.
32 Ni B, Liu H L, Wang P P, et al. Nature Communications, 2015, 6(1), 8756.
33 Liu H L, Gong Q H, Yue Y H, et al. Journal of the American Chemical Society, 2017, 139(25), 8579.
34 Liu Q D, Wang X. Matter, 2020, 2(4), 816.
35 Xia Y N, Xiong Y J, Lim B, et al. Angewandte Chemie International Edition, 2009, 48(1), 60.
36 Liu J L, Shi W X, Ni B, et al. Nature Chemistry, 2019, 11(9), 839.
37 Ni B, Shi Y, Wang X. Advanced Materials, 2018, 30(43), 1802031.
38 Zhang S M, Shi Y, He T, et al. Chemistry of Materials, 2018, 30(24), 8727.
39 Bu F L, Chen C Q, Yu Y, et al. Angewandte Chemie International Edition, 2023, 62(3), e202216062.
40 Liu J L, Shi W X, Wang X. Journal of the American Chemical Society, 2019, 141(47), 18754.
41 Liu J L, Liu N, Wang H W, et al. Journal of the American Chemical Society, 2020, 142(41), 17557.
42 Liu J L, Shi W X, Wang X. Journal of the American Chemical Society, 2021, 143(39), 16217.
43 Liu J L, Wang S B, Liu N, et al. Small, 2021, 17(4), 2006260.
44 Liu J L, Zhuang J, Shi W X, et al. Chemistry of Materials, 2021, 33(17), 7100.
45 Liu J L, Li Y Q, Chen Z, et al. Journal of the American Chemical Society, 2022, 144(50), 23191.
46 Liu J L, Nie S Y, Wu L, et al. Chemical Research in Chinese Universities, 2023, 39(4), 624.
47 Zhang S M, Lu Q C, Yu B, et al. Advanced Functional Materials, 2021, 31(20), 2100703.
48 Liu J L, Shi W X, Nie S Y, et al. Small Structures, 2022, 3(7), 2200039.
49 Liu Q D, He S Q, Yu B, et al. Advanced Materials, 2022, 34(40), 2206178.
50 Liu J L, Wang M X, Dipalo M C, et al. Chemical Science, 2021, 12(34), 11490.
51 Ge H Y, Zheng L R, Yuan G B, et al. Journal of the American Chemical Society, 2024, 146(15), 10735.
52 Zhang S M, Shi H D, Tang J W, et al. Science China Materials, 2021, 64(12), 2949.
53 Zhang S M, Shi W X, Wang X. Science, 2022, 377(6601), 100.
54 Zhang S M, Shi W X, Yu B A, et al. Journal of the American Chemical Society, 2022, 144(36), 16389.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[3] 周乃吉, 吴修胜, 温红娟, 施思嘉, 曹菊芳. 增强钛酸铋钠基陶瓷储能研究进展[J]. 材料导报, 2025, 39(6): 24010096-17.
[4] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[5] 李广, 付一川, 余海存, 杨鹏辉, 魏莹, 喇培清, 顾玉芬. 光热发电储能熔盐研究进展[J]. 材料导报, 2025, 39(4): 24010158-10.
[6] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[7] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[8] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[9] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[10] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[11] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[12] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[13] 陈翠翠, 张倩倩, 杨勇, 舒鑫, 冉千平. 低水胶比水泥浆体静动态流变行为的经时变化[J]. 材料导报, 2024, 38(15): 23040237-5.
[14] 孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
[15] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed