Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 23100024-11    https://doi.org/10.11896/cldb.23100024
  金属与金属基复合材料 |
轨道车辆零部件材料多轴疲劳寿命预测理论与方法研究进展
李莉佳1, 刘振晖1, 尹晓静1, 严文强2, 郝兆朋1,*
1 长春工业大学机电工程学院,长春 130012
2 中机试验装备股份有限公司,长春 130103
Theoretical and Technological Advances in Multi-axial Fatigue Life Prediction of Rail Vehicle Component Materials
LI Lijia1, LIU Zhenhui1, YIN Xiaojing1, YAN Wenqiang2, HAO Zhaopeng1,*
1 School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China
2 Sinotest Equipment Co., Ltd., Changchun 130103, China
下载:  全 文 ( PDF ) ( 38727KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,随着我国高速铁路的快速发展,列车运行速度也在不断提升,也对轨道车辆的安全性、稳定性和可靠性提出了更高的要求。复杂多变的实际服役工况环境对轨道车辆零部件材料的强度、刚度尤其是疲劳寿命具有显著影响。因此,开展接近轨道车辆零部件真实服役环境(如复合载荷、高/低温)下的材料多轴疲劳寿命预测理论与方法研究具有重要的工程价值和实践意义。首先,本文对传统轨道车辆零部件材料多轴疲劳寿命预测理论与方法进行了回顾与总结,尤其对基于临界平面法的多轴疲劳寿命预测模型进行了详细介绍。其次,就有限元模拟技术在传统轨道车辆零部件材料多轴疲劳寿命预测中的应用进行了介绍;并阐述了其在新兴轨道车辆零部件材料多轴疲劳寿命预测中的具体应用。最后,讨论了目前研究所面临的主要问题与挑战,这对轨道车辆零部件材料多轴疲劳寿命预测理论与方法研究的进一步发展具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李莉佳
刘振晖
尹晓静
严文强
郝兆朋
关键词:  轨道车辆零部件材料  多轴疲劳寿命预测  有限元模拟  临界平面法  损伤力学    
Abstract: In recent years, with the rapid development of high-speed railway in China, the train speeds are continuously increasing, which puts forward higher requirements for the safety, stability, and reliability of rail vehicles. The complex and varied service conditions have significant impacts on the strength, stiffness and even fatigue life of rail vehicle components. Consequently, it is of greater engineering value and practical significance to carry out research on the theories and methods for multiaxial fatigue life prediction of materials under conditions that closely resemble the real service conditions of rail vehicle components (such as composite loading and high/low temperature). Firstly, this paper reviewed and summarized the traditional multi-axial fatigue life prediction theories and methods of rail vehicle component materials, especially introduced the multi-axial fatigue life prediction model based on critical plane method in detail. Secondly, introduced the application of finite element method in the conventional multiaxial fatigue life prediction of rail vehicle component materials, as well as in the emerging multi-axial fatigue life prediction of rail vehicle parts. Finally, proposed the main problems and challenges of current researches. This paper has great significance for the further development of multi-axial fatigue life prediction theories and methods of rail vehicle component materials.
Key words:  rail vehicle component material    multi-axial fatigue life prediction    finite element simulation    critical plane method    damage mechanics
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TB302.3  
基金资助: 吉林省重点研发项目(20220201027GX);吉林省青年科技人才托举工程(QT202209)
通讯作者:  *郝兆朋,博士,长春工业大学机电工程学院教授、博士研究生导师。目前主要从事材料加工与检测技术研究工作。haozhaopeng@126.com   
作者简介:  李莉佳,博士,长春工业大学机电工程学院副教授、硕士研究生导师。目前主要从事服役工况下材料力学性能测试技术相关研究工作。
引用本文:    
李莉佳, 刘振晖, 尹晓静, 严文强, 郝兆朋. 轨道车辆零部件材料多轴疲劳寿命预测理论与方法研究进展[J]. 材料导报, 2025, 39(12): 23100024-11.
LI Lijia, LIU Zhenhui, YIN Xiaojing, YAN Wenqiang, HAO Zhaopeng. Theoretical and Technological Advances in Multi-axial Fatigue Life Prediction of Rail Vehicle Component Materials. Materials Reports, 2025, 39(12): 23100024-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100024  或          https://www.mater-rep.com/CN/Y2025/V39/I12/23100024
1 Li G, Wu R D, Deng X X, et al. Vehicle System Dynamics, 2022, 60(11), 3848.
2 Chen Z L, Chen J Y, Liu H, et al. Tunnelling and Underground Space Technology, 2018, 71, 253.
3 Bragança C, Neto J, Pinto N, et al. Vehicle System Dynamics, 2022, 60(9), 3024.
4 Xu G J, Hou D M, Qi H Y, et al. Mechanical Systems and Signal Processing, 2021, 146, 107050.
5 Bešinović N. Transport Reviews, 2020, 40(4), 457.
6 Yang Y F, Xu M K, Ling L, et al. Wear, 2022, 500, 204348.
7 He L, Wang J, Wu X, et al. Construction and Building Materials, 2023, 377, 130962.
8 Yan G X, Chen J, Bai Y, et al. Processes, 2022, 10(4), 724.
9 Zhang R J, Zheng C L, Lv B, et al. Engineering Failure Analysis, 2023, 143, 106875.
10 Xiu R, Spiryagin M, Wu Q, et al. Engineering Failure Analysis, 2020, 116, 104725.
11 Zhu Z Y, Zhu Y L, Wang Q Y. Materials Science and Engineering: A, 2020, 773, 138731.
12 Tang M Z, Xiong X H, Li X B, et al. Nonlinear Dynamics, 2023, 111(3), 2111.
13 Da Fonte M, Reis L, De Freitas M. Theoretical and Applied Fracture Mechanics, 2015, 80, 57.
14 Wu S C, Xu Z W, Kang G Z, et al. International Journal of Fatigue, 2018, 117, 90.
15 Zerbst U, Beretta S, Köhler G, et al. Engineering Fracture Mechanics, 2013, 98, 214.
16 Günay M, Korkmaz M E, Özmen R. Engineering Science and Technology, 2020, 23(2), 421.
17 Ye Y G, Zhang Y X, Wang Q B, et al. Mechanical Systems and Signal Processing, 2020, 138, 106565.
18 Guo F, Wu S C, Liu J X, et al. International Journal of Fatigue, 2020, 132, 105353.
19 Yang B, Duan H, Wu S, et al. Chinese Journal of Mechanical Engineering, 2019, 32, 1.
20 Ji C, Sun S, Li Q, et al. Measurement, 2020, 166, 108164.
21 Wang B J, Li Q, Ren Z S, et al. International Journal of Fatigue, 2020, 132, 105389.
22 Wang B J, Xie S Q, Jiang C Y, et al. Engineering Failure Analysis, 2020, 118, 104922.
23 Ma X C, Wang Y J, Wang X H, et al. Engineering Fracture Mechanics, 2023, 281, 109097.
24 Pradhan S, Samantaray A K, Bhattacharyya R. Simulation, 2019, 95(5), 441.
25 Fang X Y, Gong J E, Zhang F, et al. Engineering Fracture Mechanics, 2023, 292, 109586.
26 Sharma S K, Sharma R C, Choi Y, et al. Applied Sciences, 2023, 13(9), 5252.
27 Liu D R, Lu Z J, Cao T P, et al. Vehicle System Dynamics, 2017, 55(6), 853.
28 Sharma S K, Sharma R C, Kumar A, et al. International Journal of Vehicle Structures & Systems, 2015, 7(1), 1.
29 Samareh-Mousavi S S, Mandegarian S, Taheri-Behrooz F. International Journal of Fatigue, 2019, 119, 290.
30 Lazorenko G, Kasprzhitskii A, Khakiev Z, et al. Construction and Building Materials, 2019, 205, 111.
31 Kandil F A, Brown M W, Miller R K J. The Metal Society, 1982, 280, 203.
32 Socie D. Journal of Engineering Materials and Technology, 1987, 108(4), 293.
33 Fatemi A, Socie D F. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3), 149.
34 Wang C H, Brown M W. Fatigue & Fracture of Engineering Materials & Structures, 1993, 16(12), 1285.
35 Gan L, Wu H, Zhong Z. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42 (12), 2694.
36 Zhao B F, Xie L Y, Wang L, et al. International Journal of Fatigue, 2021, 143, 105993.
37 Han Q H, Wang P P, Lu Y. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(10), 2800.
38 Yang J B, Gong Y, Jiang L F, et al. Journal of Materials Research and Technology, 2022, 18, 4549.
39 Ren Z, Qin X R, Zhang Q, et al. Journal of Mechanical Strength, 2023, 45(3), 723 (in Chinese).
任重, 秦仙蓉, 张氢, 等. 机械强度, 2023, 45(3), 723.
40 Gates N R, Fatemi A. International Journal of Fatigue, 2017, 100, 322.
41 Sun L, Zhang X C, Wang R Z, et al. International Journal of Fatigue, 2023, 166, 107277.
42 Xue L, Shang D G, Li D H, et al. International Journal of Fatigue, 2020, 131, 105350.
43 Iftikhar S H, Albinmousa J. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(1), 235.
44 Wang R Z, Guo S J, Chen H, et al. Journal of the Mechanics and Physics of Solids, 2019, 131, 313.
45 Foti P, Razavi N, Fatemi A, et al. Progress in Materials Science, 2023, 137, 101126.
46 Branco R, Costa J D, Borrego L P, et al. International Journal of Fatigue, 2021, 151, 106405.
47 Deng Q Y, Zhu S P, Niu X, et al. International Journal of Fatigue, 2023, 166, 107281.
48 Li Y, Chen H, Cai L, et al. IOP Conference Series:Materials Science and Engineering, 2018, 339(1), 012024.
49 Xu S, Zhu S P, Hao Y Z, et al. Engineering Failure Analysis, 2018, 93, 55.
50 Yu Z Y, Zhu S P, Liu Q, et al. Materials, 2017, 10(8), 923.
51 Shangguan Y M, Wang W J, Yang C, et al. Applied Sciences, 2022, 13(1), 215.
52 Kassner M. International Journal of Fatigue, 2012, 34(1), 103.
53 Zhang W, Liu H L, Wang Q, et al. Materials, 2017, 10(7), 689.
54 Zhu P N, Gao J X, Yuan Y P, et al. Journal of Ship Mechanics, 2024, 28(6), 917 (in Chinese).
朱鹏年, 高建雄, 袁逸萍, 等. 船舶力学, 2024, 28(6), 917.
55 Topper T H, Wetzel R M, Morrow J D. Journal of Materials, 1969, 4(1), 200.
56 Garud Y S. Journal of Engineering Materials and Technology, 1981, 103, 118.
57 Fan J L, Zhao Y G, Guo X L. Mechanics of Materials, 2018, 120, 15.
58 Fan J L. Journal of Mechanical Engineering, 2018, 54(6), 1 (in Chinese).
樊俊铃. 机械工程学报, 2018, 54(6), 1.
59 Teng Z J, Wu H, Boller C, et al. International Journal of Fatigue, 2020, 131, 105370.
60 Wei W, Sun Y, Zhao X M, et al. Transactions of the China Welding Institution, 2023, 44(8), 91 (in Chinese).
魏巍, 孙杨, 赵兴明, 等. 焊接学报, 2023, 44(8), 91.
61 Lu Y H, Xiang P L, Dong P, et al. Engineering Failure Analysis, 2018, 89, 222.
62 Lan Q Q, Song F. Journal of Physics, 2021, 1885(4), 042057.
63 Olivier B, Verlinden O, Kouroussis G. International Journal of Rail Transportation, 2020, 8(2), 135.
64 Miao B R, Luo Y X, Peng Q M, et al. Materials & Design, 2020, 194, 108910.
65 Liu K, Lin J. Journal of Rail and Rapid Transit, 2020, 234(10), 1285.
66 Daniyan I, Mpofu K, Muvunzi R, et al. Procedia CIRP, 2021, 100, 37.
67 Chen G X, Lv J Z, Zhu Q, et al. Wear, 2019, 426, 1788.
68 Bian J, Gu Y T, Murray M H. Vehicle System Dynamics, 2013, 51(6), 784.
69 Xin L, Markine V L, Shevtsov I Y. Wear, 2016, 366, 167.
70 Jin D, Gou Z F. Journal of Aeronautical Materials, 2017, 37(2), 81 (in Chinese).
金丹, 缑之飞. 航空材料学报, 2017, 37(2), 81.
71 El-sayed H M, Lotfy M, Zohny H N E, et al. Ain Shams Engineering Journal, 2018, 9(4), 2329.
72 Cheng Q, Gao J X, Yuan Y P, et al. China Mechanical Engineering, 2024, 35(7), 1194 (in Chinese).
程琴, 高建雄, 袁逸萍, 等. 中国机械工程, 2024, 35(7), 1194.
73 Zhang K, Li Q S, Xia W H. Journal of Mechanical & Electrical Engineering, 2022, 39(8), 1031 (in Chinese).
张珂, 李青松, 夏卫华. 机电工程, 2022, 39(8), 1031.
74 Qu X G, Zhang X K, Jiao S Y, et al. Journal of Safety and Environment, 2022, 22(3), 1284 (in Chinese).
渠晓刚, 张晓康, 焦松岩, 等. 安全与环境学报, 2022, 22(3), 1284.
75 Qin T Y, Ren X Y, Hu F F, et al. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7), 1830 (in Chinese).
秦天宇, 任鑫焱, 胡飞飞, 等. 力学学报, 2022, 54(7), 1830.
76 Zhu T, Yin M X, Wang C, et al. Journal of the China Railway Society, 2022, 44(4), 19 (in Chinese).
朱涛, 尹敏轩, 王超, 等. 铁道学报, 2022, 44(4), 19.
77 Haidari A, Tehrani H P. Latin American Journal of Solids and Structures, 2019, 12(6), 1144.
78 Cong T, Liu X L, Wu S, et al. Engineering Failure Analysis, 2021, 123, 105322.
79 Suetrong C, Uthaisangsuk V. Materials Science and Engineering:A, 2022, 840, 142980.
80 Yan R G, Wang W J, Guo Y T, et al. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(7), 2072.
81 Yao Y, Liu H, Zhu H, et al. Journal of Central South University(Science and Technology), 2023, 54(1), 390 (in Chinese).
姚远, 刘红, 朱浩, 等. 中南大学学报(自然科学版), 2023, 54(1), 390.
82 Fang C C, Guan Y B, Zhou W, et al. Journal of Railway Science and Engineering, 2023, 20(8), 3049 (in Chinese).
方聪聪, 关煜彬, 周伟, 等. 铁道科学与工程学报, 2023, 20(8), 3049.
83 Liao A H, Huang X, Fang Y. Journal of Vibration, Measurement & Diagnosis, 2017, 37(2), 392 (in Chinese).
廖爱华, 黄旭, 方宇. 振动. 测试与诊断, 2017, 37(2), 392.
84 Hou L G, Liang S L, Chi M R, et al. Machinery, 2021, 48(10), 38 (in Chinese).
侯龙刚, 梁树林, 池茂儒, 等. 机械, 2021, 48(10), 38.
85 Tian Z H, Wan Z M, Du X W, et al. China Rubber Industry, 2001(10), 628 (in Chinese).
田振辉, 万志敏, 杜星文, 等. 橡胶工业, 2001(10), 628.
86 Tian Z H, Tan H F, Zhang X H, et al. Acta Materiae Compositae Sinica, 2004(2), 60 (in Chinese).
田振辉, 谭惠丰, 张幸红, 等. 复合材料学报, 2004(2), 60.
87 Li Y, Chen J, Wang J, et al. International Journal of Fatigue, 2020, 139, 105750.
88 Dikmen F, Bayraktar M, Güçlü R. Journal of Mechanical Engineering, 2012, 58(9), 545.
89 Mars V W, Fatemi A. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(6), 515.
90 Mars V W, Fatemi A. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(6), 523.
91 Luo R, Mortel W, Wu X. Engineering Failure Analysis, 2008, 16(5), 1366.
[1] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[2] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[3] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[4] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[5] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[6] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[7] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[8] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[9] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[10] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[11] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[12] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[13] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[14] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[15] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed