Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22090138-10    https://doi.org/10.11896/cldb.22090138
  无机非金属及其复合材料 |
纳米增强水泥基复合材料抗氯离子迁移及固化性能综述
龙武剑1,2,3, 余阳2,3, 何闯2,3, 李雪琪2,3, 熊琛2,3, 冯甘霖2,3,*
1 滨海城市韧性基础设施教育部重点实验室,广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
3 深圳大学土木与交通工程学院,广东 深圳 518060
Review on Chloride Ion Ingress Resistance and Chloride Binding Performance of Nano-reinforced Cement-based Composites
LONG Wujian1,2,3, YU Yang2,3, HE Chuang2,3, LI Xueqi2,3, XIONG Chen2,3, FENG Ganlin2,3,*
1 Key Laboratory of Coastal City Resilience Infrastructure, Ministry of Education, Shenzhen 518060, Guangdong, China
2 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
3 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 20122KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 先进碳基纳米材料在水泥基材料领域的渗透突破了传统水泥基材料的性能使用局限,是未来高性能水泥基复合材料研究的热门领域。然而,虽然目前关于纳米增强水泥基复合材料水化、微观、力学等性能的研究相对较多,但是针对长期耐久性能,特别是对影响钢筋锈蚀的主要因素氯盐侵蚀方面的研究相对较少,且缺少一定的深度与广度。纳米增强水泥基材料抗氯盐侵蚀性能主要体现在两个方面:一是孔隙层面,通过密实孔隙降低整体孔隙率,增加纳微观毛细孔比例,从而降低外界氯离子侵入迁移速率;二是固化层面,通过孔隙固液交界处水泥水化产物氯离子置换固化作用,吸附并降低孔隙溶液中自由氯离子含量。它们的最终目的都是在结构服役寿命内保证钢筋表面侵入的自由氯离子浓度处于锈蚀临界浓度之下,降低锈蚀风险及维护成本。深入明晰纳米增强水泥基复合材料抗氯离子迁移和固化性能及机理,对建立有效预测模型,指导并推动高抗蚀纳米增强水泥基复合材料设计、制备及应用具有重要意义。本文总结了近年来纳米增强水泥基复合材料抗氯盐侵蚀性能的研究进展,对比分析了不同维度、不同制备手段、不同化学组成等各类纳米材料分别对抗氯离子迁移性能和氯离子固化性能的影响效果及机制,同时对未来纳米增强高抗蚀水泥基复合材料的发展及应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙武剑
余阳
何闯
李雪琪
熊琛
冯甘霖
关键词:  纳米增强  水泥基复合材料  耐久性  氯离子迁移  氯离子固化    
Abstract: The application of advanced carbon-based nanomaterials in the field of cement-based materials has broken through the performance limits of traditional cement-based materials, as a hot field in the future research of high-performance cement-based composites. At present, there have been many studies on the hydration, microstructure and mechanic properties of nano-reinforced cement-based composites. However relatively few studies have focused on the long-term durability properties, especially resistance to the chloride induced corrosion. The chloride induced corrosion resistance of nano reinforced cement-based materials mainly contains two aspects: firstly, from pore structure aspect, nanomaterials could refine the pore structure of cement paste by reducing the overall porosity and increasing the proportion of nano and micro pores at the same time, leading to reduced penetration rate of external chloride ions. Secondly, from chloride binding aspect, nanomaterials could increase both the physical and chemical chloride binding capacity at the pore-solution interface, by promoting and modifying cement hydration, leading to reduced free chloride content remaining in the pore solution. Above mentioned two beneficial effects of nanomaterials can both reduce the corrosion risk by preventing the free chloride concentration around the surface of reinforcing steel bars reaching critical corrosion concentration. However, the pre-paration of stable nano-reinforced cement-based composites and mechnisms of hydration modification brought by different dimensional nanomaterials need to be further studied. This paper summarizes the research progress on chloride induced corrosion resistance of nano-reinforced cement-based materials in recent years. Effects and mechanisms of various nano materials with different dimensions, different preparation methods and different chemical compositions on chloride ion migration resistance and chloride ion binding performance are reviewd. Future prospect on the development and application of nano-reinforced high corrosion resistance cement-based composites are also proposed.
Key words:  nano-reinforced    cement-based composites    durability    chloride ion migration    chloride binding
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金-山东联合基金(U2006223);深圳市科技计划项目(JCYJ20190808151011502);广东省重点领域研发计划项目(2019B111107003)
通讯作者:  冯甘霖,深圳大学土木与交通工程学院博士后。2011年华中科技大学土木工程专业本科毕业,2013年哈尔滨工业大学(深圳)结构工程硕士毕业,2018年于英国普利茅斯大学取得博士学位(国家公派留学基金资助)后到深圳大学进行博士后工作至今。目前从事混凝土耐久性、多尺度氯离子传输数值仿真、纳米水泥基复合材料等方面的研究工作。发表论文10余篇,包括Cement and Concrete Research、Composite Structures、Construction and Building Materials、Computational Materials Science等。g-l.feng@szu.edu.cn   
作者简介:  龙武剑,深圳大学土木与交通工程学院教授、博士研究生导师,土木与交通工程学院执行院长。2001年本科毕业于法国国立图卢兹第三大学,2004年在法国高等师范大学取得硕士学位,2008年从加拿大舍布鲁克大学博士毕业后在深圳大学工作至今。目前主要从事材料-结构设计及应用一体化、纳米改性水泥基复合材料、滨海混凝土材料-结构使用寿命、智能土木工程材料等方面的研究,近五年以第一作者&通信作者在Carbon、Green Chem.、Cement Concrete Comp.、ACI Mater.J.、Compos.Part B-Eng.、Automat.Constr.等国际知名期刊发表学术论文70余篇。
引用本文:    
龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
LONG Wujian, YU Yang, HE Chuang, LI Xueqi, XIONG Chen, FENG Ganlin. Review on Chloride Ion Ingress Resistance and Chloride Binding Performance of Nano-reinforced Cement-based Composites. Materials Reports, 2024, 38(7): 22090138-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090138  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22090138
1 Lin J, Liu Y, Sui H, et al. Cement and Concrete Research, 2022, 154, 106737.
2 Zou F, Zhang M, Hu C, et al. Chemical Engineering Journal, 2021, 412, 128569.
3 Meng J, Zhong J, Xiao H, et al. Construction and Building Materials, 2021, 270, 121470.
4 Wu Z, Khayat K H, Shi C, et al. Cement and Concrete Composites, 2021, 119, 103992.
5 Shi J, Wu M, Ming J. Cement and Concrete Composites, 2022, 132, 104628.
6 Chen X, He Y, Lu L, et al. Construction and Building Materials, 2022, 342, 127929.
7 Hua T, Hu X, Tang J, et al. Construction and Building Materials, 2022, 326, 126872.
8 Liu Y, Shi J. Corrosion Science, 2022, 205, 110451.
9 Quan T V. Construction and Building Materials, 2022, 328, 127103.
10 Garcia R, de la Rubia M A, Enriquez E, et al. Construction and Buil-ding Materials, 2021, 298, 123903.
11 Indukuri C S R, Nerella R. Journal of Building Engineering, 2021, 37, 102174.
12 Nguyen H D, Zhang Q, Sagoe-Crentsil K, et al. Cement and Concrete Composites, 2021, 124, 104279.
13 Sun J, Shi Z, Dai J, et al. Cement and Concrete Composites, 2022, 132, 104622.
14 Monkman S, Sargam Y, Raki L. Construction and Building Materials, 2022, 321, 126369.
15 Tang M, Ba H J, Li Y. Journal of the Chinese Ceramic Society, 2003(5), 523(in Chinese).
唐明, 巴恒静. 李颖. 硅酸盐学报, 2003(5), 523.
16 Singh L P, Bhattacharyya S K, Shah S P, et al. Construction and Buil-ding Materials, 2016, 102, 943.
17 Li H, Xiao H, Guan X, et al. Composites Part B: Engineering, 2014, 56, 698.
18 Shaikh F U A, Supit S W M. Construction and Building Materials, 2015, 99, 208.
19 Ying J, Zhou B, Xiao J. Construction and Building Materials, 2017, 150, 49.
20 Li H, Yan D, Chen G, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2016, 31(3), 582.
21 Makar J M, Chan G W. Journal of the American Ceramic Society, 2009, 92(6), 1303.
22 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Cement and Concrete Composites, 2010, 32(2), 110.
23 Nasibulin A G, Shandakov S D, Nasibulina L I, et al. New Journal of Physics, 2009, 11(2), 023013.
24 Li G Y, Wang P M, Zhao X. Carbon, 2005, 43(6), 1239.
25 Lee H S, Balasubramanian B, Gopalakrishna G V T, et al. Construction and Building Materials, 2018, 159, 463.
26 Duan Y G, Zhu H. China Concrete and Cement Products, 2022(4), 10 (in Chinese).
段艳刚, 朱华. 混凝土与水泥制品, 2022(4), 10.
27 Shi T, Zhao Q F, Hu Z J, et al. Acta Materiae Compositae Sinica, 2022(10), 4769(in Chinese).
施韬, 赵启帆. 胡卓君, 等. 复合材料学报, 2022(10), 4769.
28 Gamal H A, El-Feky M S, Alharbi Y R, et al. Sustainability, 2021, 13(3), 2.
29 Li C. Journal of Building Engineering, 2021, 41, 102419.
30 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
31 Long W J, Gu Y C, Xiao B X, et al. Construction and Building Mate-rials, 2018, 179, 661.
32 Xu P, Zhang X H, Ming G L, et al. Materials Reports, 2023, 37(16), 115 (in Chinese).
徐鹏, 张轩翰. 明高林, 等. 材料导报, 2023, 37(16), 115.
33 He C, Xu P, Zhang X, et al. Carbon, 2022, 186, 91.
34 Mohammed A, Sanjayan J G, Duan W H, et al. Construction and Buil-ding Materials, 2015, 84, 341.
35 Du H, Pang S D. Cement and Concrete Research, 2015, 76, 10.
36 Du H, Gao H J, Pang S D. Cement and Concrete Research, 2016, 83, 114.
37 Zhao L, Hou D, Wang P, et al. Construction and Building Materials, 2020, 257, 119566.
38 Guo Y, Zhang T, Du J, et al. Journal of Building Engineering, 2022, 49, 104093.
39 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research, 2009, 39(4), 340.
40 Ramachandran V S. Matériaux Et Construction, 1971, 4(1), 3.
41 Plusquellec G, Nonat A. Cement and Concrete Research, 2016, 90, 89.
42 Yoon S, Ha J, Chae S R, et al. Magazine of Concrete Research, 2014, 66(3), 141.
43 Yang Z, Sui S, Wang L, et al. Construction and Building Materials, 2020, 232, 117219.
44 Long W J, Zhang X, Feng G L, et al. Cement and Concrete Composites, 2022, 132, 104603.
45 Wang Z Z. The chloride binding capability and mechanism of cement-based material modified by graphene sheets. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese).
王珍珍. 石墨烯水泥基材料固化氯离子能力及机理研究. 硕士学位论文, 大连理工大学, 2020.
46 Jing G, Wu J, Lei T, et al. Construction and Building Materials, 2020, 248, 118699.
47 Naseem Z, Shamsaei E, Sagoe-Crentsil K, et al. Cement and Concrete Research, 2022, 158, 106843.
48 Long W J, Xie J, Zhang X, et al. Cement and Concrete Composites, 2021, 123, 104213.
49 Yang Z, Gao Y, Mu S, et al. Construction and Building Materials, 2019, 195, 415.
50 Gou M F, Guan X M. Materials Reports, 2010, 24(11), 124 (in Chinese).
勾密峰, 管学茂. 材料导报, 2010, 24(11), 124.
51 Luo R, Cai Y B, Wang C Y, et al. China civil engineering journal, 2002(6), 100 (in Chinese).
罗睿, 蔡跃波. 王昌义, 等. 土木工程学报, 2002(6), 100.
52 Wilson W, Gonthier J N, Georget F, et al. Cement and Concrete Research, 2022, 156, 106747.
53 Wang X, Ni W, Jin R, et al. Construction and Building Materials, 2019, 220, 119.
54 Geng J, Easterbrook D, Li L Y, et al. Cement and Concrete Research, 2015, 68, 211.
55 Shi Z, Geiker M R, De Weerdt K, et al. Cement and Concrete Research, 2017, 95, 205.
56 Zhu Z, Wang Z, Xu L, et al. Journal of Building Engineering, 2022, 46, 103718.
57 Birnin-Yauri U A, Glasser F P. Cement and Concrete Research, 1998, 28, 1713.
58 Zhang J, Shi C, Zhang Z. Construction and Building Materials, 2019, 226, 21.
59 Hu Y, Li H, Wang Q, et al. Construction and Building Materials, 2019, 229, 116921.
60 Yang L, Chen M, Lu Z, et al. Cement and Concrete Composites, 2020, 114, 103817.
61 Li S, Jin Z, Yu Y. Construction and Building Materials, 2021, 293, 123493.
62 Li D, Zhu Y Y, Geng J, et al. Journal of Xi’an University of Architecture & Technology, 2019, 51(3), 344 (in Chinese).
李东, 朱月圆. 耿健, 等. 西安建筑科技大学学报, 2019, 51(3), 344.
63 Yang L, Xu J, Huang Y, et al. Construction and Building Materials, 2021, 272, 122002.
64 Geng J, Pan C, Wang Y, et al. Construction and Building Materials, 2021, 273, 121678.
65 Xu J, Tan Q, Mei Y. Corrosion Science, 2020, 163, 108223.
66 Xiang Y, Liang G, Sun H, et al. Construction and Building Materials, 2022, 320, 126325.
67 Chen M Z, Yu L W, Yuan H H, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(7), 2152 (in Chinese).
陈梦竹, 余林文, 袁慧慧, 等. 硅酸盐通报, 2021, 40(7), 2152.
68 Li Z M, Feng Q, Zhang L H, et al. Journal of Materials Science and Engineering, 2016, 34(6), 998 (in Chinese).
李志敏, 凤颀, 张连红, 等. 材料科学与工程学报, 2016, 34(6), 998.
69 Hu Z, Liu Q F. Materials Reports, 2023, 37(9), 21120077 (in Chinese).
胡哲, 刘清风. 材料导报, 2023, 37(9), 21120077.
70 Tong L Y, Liu Q F. Acta Materiae Compositae Sinica, 2022(11), 5181(in Chinese).
童良玉, 刘清风. 复合材料学报, 2022(11), 5181.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[3] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[6] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[7] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[8] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[9] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[10] 赵增丰, 蒲紫盈, 林璨, 肖建庄, 姚磊, 姬宸源, 刘雅婕. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报, 2024, 38(20): 23100019-13.
[11] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[12] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[13] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[14] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[15] 王家滨, 张凯峰, 郑康华, 符梦涛. 完全浸泡再生混凝土Mg2+-SO42--Cl-侵蚀耐久性损伤规律与机理[J]. 材料导报, 2024, 38(18): 23050184-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed