Review on Chloride Ion Ingress Resistance and Chloride Binding Performance of Nano-reinforced Cement-based Composites
LONG Wujian1,2,3, YU Yang2,3, HE Chuang2,3, LI Xueqi2,3, XIONG Chen2,3, FENG Ganlin2,3,*
1 Key Laboratory of Coastal City Resilience Infrastructure, Ministry of Education, Shenzhen 518060, Guangdong, China 2 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China 3 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
Abstract: The application of advanced carbon-based nanomaterials in the field of cement-based materials has broken through the performance limits of traditional cement-based materials, as a hot field in the future research of high-performance cement-based composites. At present, there have been many studies on the hydration, microstructure and mechanic properties of nano-reinforced cement-based composites. However relatively few studies have focused on the long-term durability properties, especially resistance to the chloride induced corrosion. The chloride induced corrosion resistance of nano reinforced cement-based materials mainly contains two aspects: firstly, from pore structure aspect, nanomaterials could refine the pore structure of cement paste by reducing the overall porosity and increasing the proportion of nano and micro pores at the same time, leading to reduced penetration rate of external chloride ions. Secondly, from chloride binding aspect, nanomaterials could increase both the physical and chemical chloride binding capacity at the pore-solution interface, by promoting and modifying cement hydration, leading to reduced free chloride content remaining in the pore solution. Above mentioned two beneficial effects of nanomaterials can both reduce the corrosion risk by preventing the free chloride concentration around the surface of reinforcing steel bars reaching critical corrosion concentration. However, the pre-paration of stable nano-reinforced cement-based composites and mechnisms of hydration modification brought by different dimensional nanomaterials need to be further studied. This paper summarizes the research progress on chloride induced corrosion resistance of nano-reinforced cement-based materials in recent years. Effects and mechanisms of various nano materials with different dimensions, different preparation methods and different chemical compositions on chloride ion migration resistance and chloride ion binding performance are reviewd. Future prospect on the development and application of nano-reinforced high corrosion resistance cement-based composites are also proposed.
通讯作者:
冯甘霖,深圳大学土木与交通工程学院博士后。2011年华中科技大学土木工程专业本科毕业,2013年哈尔滨工业大学(深圳)结构工程硕士毕业,2018年于英国普利茅斯大学取得博士学位(国家公派留学基金资助)后到深圳大学进行博士后工作至今。目前从事混凝土耐久性、多尺度氯离子传输数值仿真、纳米水泥基复合材料等方面的研究工作。发表论文10余篇,包括Cement and Concrete Research、Composite Structures、Construction and Building Materials、Computational Materials Science等。g-l.feng@szu.edu.cn
1 Lin J, Liu Y, Sui H, et al. Cement and Concrete Research, 2022, 154, 106737. 2 Zou F, Zhang M, Hu C, et al. Chemical Engineering Journal, 2021, 412, 128569. 3 Meng J, Zhong J, Xiao H, et al. Construction and Building Materials, 2021, 270, 121470. 4 Wu Z, Khayat K H, Shi C, et al. Cement and Concrete Composites, 2021, 119, 103992. 5 Shi J, Wu M, Ming J. Cement and Concrete Composites, 2022, 132, 104628. 6 Chen X, He Y, Lu L, et al. Construction and Building Materials, 2022, 342, 127929. 7 Hua T, Hu X, Tang J, et al. Construction and Building Materials, 2022, 326, 126872. 8 Liu Y, Shi J. Corrosion Science, 2022, 205, 110451. 9 Quan T V. Construction and Building Materials, 2022, 328, 127103. 10 Garcia R, de la Rubia M A, Enriquez E, et al. Construction and Buil-ding Materials, 2021, 298, 123903. 11 Indukuri C S R, Nerella R. Journal of Building Engineering, 2021, 37, 102174. 12 Nguyen H D, Zhang Q, Sagoe-Crentsil K, et al. Cement and Concrete Composites, 2021, 124, 104279. 13 Sun J, Shi Z, Dai J, et al. Cement and Concrete Composites, 2022, 132, 104622. 14 Monkman S, Sargam Y, Raki L. Construction and Building Materials, 2022, 321, 126369. 15 Tang M, Ba H J, Li Y. Journal of the Chinese Ceramic Society, 2003(5), 523(in Chinese). 唐明, 巴恒静. 李颖. 硅酸盐学报, 2003(5), 523. 16 Singh L P, Bhattacharyya S K, Shah S P, et al. Construction and Buil-ding Materials, 2016, 102, 943. 17 Li H, Xiao H, Guan X, et al. Composites Part B: Engineering, 2014, 56, 698. 18 Shaikh F U A, Supit S W M. Construction and Building Materials, 2015, 99, 208. 19 Ying J, Zhou B, Xiao J. Construction and Building Materials, 2017, 150, 49. 20 Li H, Yan D, Chen G, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2016, 31(3), 582. 21 Makar J M, Chan G W. Journal of the American Ceramic Society, 2009, 92(6), 1303. 22 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Cement and Concrete Composites, 2010, 32(2), 110. 23 Nasibulin A G, Shandakov S D, Nasibulina L I, et al. New Journal of Physics, 2009, 11(2), 023013. 24 Li G Y, Wang P M, Zhao X. Carbon, 2005, 43(6), 1239. 25 Lee H S, Balasubramanian B, Gopalakrishna G V T, et al. Construction and Building Materials, 2018, 159, 463. 26 Duan Y G, Zhu H. China Concrete and Cement Products, 2022(4), 10 (in Chinese). 段艳刚, 朱华. 混凝土与水泥制品, 2022(4), 10. 27 Shi T, Zhao Q F, Hu Z J, et al. Acta Materiae Compositae Sinica, 2022(10), 4769(in Chinese). 施韬, 赵启帆. 胡卓君, 等. 复合材料学报, 2022(10), 4769. 28 Gamal H A, El-Feky M S, Alharbi Y R, et al. Sustainability, 2021, 13(3), 2. 29 Li C. Journal of Building Engineering, 2021, 41, 102419. 30 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183. 31 Long W J, Gu Y C, Xiao B X, et al. Construction and Building Mate-rials, 2018, 179, 661. 32 Xu P, Zhang X H, Ming G L, et al. Materials Reports, 2023, 37(16), 115 (in Chinese). 徐鹏, 张轩翰. 明高林, 等. 材料导报, 2023, 37(16), 115. 33 He C, Xu P, Zhang X, et al. Carbon, 2022, 186, 91. 34 Mohammed A, Sanjayan J G, Duan W H, et al. Construction and Buil-ding Materials, 2015, 84, 341. 35 Du H, Pang S D. Cement and Concrete Research, 2015, 76, 10. 36 Du H, Gao H J, Pang S D. Cement and Concrete Research, 2016, 83, 114. 37 Zhao L, Hou D, Wang P, et al. Construction and Building Materials, 2020, 257, 119566. 38 Guo Y, Zhang T, Du J, et al. Journal of Building Engineering, 2022, 49, 104093. 39 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research, 2009, 39(4), 340. 40 Ramachandran V S. Matériaux Et Construction, 1971, 4(1), 3. 41 Plusquellec G, Nonat A. Cement and Concrete Research, 2016, 90, 89. 42 Yoon S, Ha J, Chae S R, et al. Magazine of Concrete Research, 2014, 66(3), 141. 43 Yang Z, Sui S, Wang L, et al. Construction and Building Materials, 2020, 232, 117219. 44 Long W J, Zhang X, Feng G L, et al. Cement and Concrete Composites, 2022, 132, 104603. 45 Wang Z Z. The chloride binding capability and mechanism of cement-based material modified by graphene sheets. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese). 王珍珍. 石墨烯水泥基材料固化氯离子能力及机理研究. 硕士学位论文, 大连理工大学, 2020. 46 Jing G, Wu J, Lei T, et al. Construction and Building Materials, 2020, 248, 118699. 47 Naseem Z, Shamsaei E, Sagoe-Crentsil K, et al. Cement and Concrete Research, 2022, 158, 106843. 48 Long W J, Xie J, Zhang X, et al. Cement and Concrete Composites, 2021, 123, 104213. 49 Yang Z, Gao Y, Mu S, et al. Construction and Building Materials, 2019, 195, 415. 50 Gou M F, Guan X M. Materials Reports, 2010, 24(11), 124 (in Chinese). 勾密峰, 管学茂. 材料导报, 2010, 24(11), 124. 51 Luo R, Cai Y B, Wang C Y, et al. China civil engineering journal, 2002(6), 100 (in Chinese). 罗睿, 蔡跃波. 王昌义, 等. 土木工程学报, 2002(6), 100. 52 Wilson W, Gonthier J N, Georget F, et al. Cement and Concrete Research, 2022, 156, 106747. 53 Wang X, Ni W, Jin R, et al. Construction and Building Materials, 2019, 220, 119. 54 Geng J, Easterbrook D, Li L Y, et al. Cement and Concrete Research, 2015, 68, 211. 55 Shi Z, Geiker M R, De Weerdt K, et al. Cement and Concrete Research, 2017, 95, 205. 56 Zhu Z, Wang Z, Xu L, et al. Journal of Building Engineering, 2022, 46, 103718. 57 Birnin-Yauri U A, Glasser F P. Cement and Concrete Research, 1998, 28, 1713. 58 Zhang J, Shi C, Zhang Z. Construction and Building Materials, 2019, 226, 21. 59 Hu Y, Li H, Wang Q, et al. Construction and Building Materials, 2019, 229, 116921. 60 Yang L, Chen M, Lu Z, et al. Cement and Concrete Composites, 2020, 114, 103817. 61 Li S, Jin Z, Yu Y. Construction and Building Materials, 2021, 293, 123493. 62 Li D, Zhu Y Y, Geng J, et al. Journal of Xi’an University of Architecture & Technology, 2019, 51(3), 344 (in Chinese). 李东, 朱月圆. 耿健, 等. 西安建筑科技大学学报, 2019, 51(3), 344. 63 Yang L, Xu J, Huang Y, et al. Construction and Building Materials, 2021, 272, 122002. 64 Geng J, Pan C, Wang Y, et al. Construction and Building Materials, 2021, 273, 121678. 65 Xu J, Tan Q, Mei Y. Corrosion Science, 2020, 163, 108223. 66 Xiang Y, Liang G, Sun H, et al. Construction and Building Materials, 2022, 320, 126325. 67 Chen M Z, Yu L W, Yuan H H, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(7), 2152 (in Chinese). 陈梦竹, 余林文, 袁慧慧, 等. 硅酸盐通报, 2021, 40(7), 2152. 68 Li Z M, Feng Q, Zhang L H, et al. Journal of Materials Science and Engineering, 2016, 34(6), 998 (in Chinese). 李志敏, 凤颀, 张连红, 等. 材料科学与工程学报, 2016, 34(6), 998. 69 Hu Z, Liu Q F. Materials Reports, 2023, 37(9), 21120077 (in Chinese). 胡哲, 刘清风. 材料导报, 2023, 37(9), 21120077. 70 Tong L Y, Liu Q F. Acta Materiae Compositae Sinica, 2022(11), 5181(in Chinese). 童良玉, 刘清风. 复合材料学报, 2022(11), 5181.