Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22060045-6    https://doi.org/10.11896/cldb.22060045
  无机非金属及其复合材料 |
温度对水性聚氨酯-混凝土宏微观粘结特性的影响
唐建辉1, 白银1, 陈徐东2,*, 张伟3
1 南京水利科学研究院材料结构研究所,南京 210029
2 河海大学土木与交通学院,南京 210098
3 深圳市东江水源工程管理处,广东 深圳 518036
Effect of Temperature on Macro- and Micro-Bonding Characteristics Between Waterborne Polyurethane and Concrete
TANG Jianhui1, BAI Yin1, CHEN Xudong2,*, ZHANG Wei3
1 Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210029, China
2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
3 Dongjiang Water Source Project Management Division of Shenzhen, Shenzhen 518036, Guangdong, China
下载:  全 文 ( PDF ) ( 25519KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究环境温度对水性聚氨酯(WPU)与混凝土宏微观界面粘结特性的影响,测试了20 ℃、35 ℃和50 ℃下水性聚氨酯的质量损失、拉伸强度和拉断伸长率随龄期的发展规律,研究了温度对水性聚氨酯与混凝土粘结强度和破坏模式的影响,并通过SEM和EDS分析了界面区的微观形貌特征和界面区厚度。结果表明:水性聚氨酯的质量损失随着温度的升高而加快,即成膜速度也更快。升高环境温度可提高水性聚氨酯的早期拉伸强度,但在较高温度(50 ℃)下水性聚氨酯的后期拉伸强度会降低。宏观上界面粘结强度随着温度的升高和龄期的延长而逐渐增加,并且粘结破坏由单一界面模式向复合破坏模式转变。在微观上,温度的升高使得界面区聚氨酯硬段含量增加,界面区厚度也由44.21 μm增加至65.08 μm,这是粘结强度随温度升高而增加的原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐建辉
白银
陈徐东
张伟
关键词:  水性聚氨酯  混凝土  温度  粘结特性  微观形貌    
Abstract: In order to understand the influence of ambient temperature on the macro- and micro-bonding characteristics of the interfacial between waterborne polyurethane (WPU) and concrete, the change of the mass loss, tensile strength and elongation at break of WPU at 20 ℃, 35 ℃ and 50 ℃ with age were tested. The influence of temperature on the bonding strength and failure mode between WPU and concrete was studied, and the micro-morphology and thickness of interfacial zone were analyzed by SEM and EDS. The results show that the mass loss of WPU increases with the increase of temperature, which indicates that film-forming speed become faster. Increasing the temperature can improve the early tensile strength of WPU, but the later tensile strength of WPU at higher temperature (50 ℃) decreases. With the increase of temperature and age, the interfacial bonding strength gradually increases, and the failure mode changes from single interface to composite failure mode. Microscopically, the increase of temperature makes the content of polyurethane hard segment in the interfacial zone gather, and the thickness of the interfacial zone increases from 44.21 μm to 65.08 μm, which leads to the increase of bonding strength.
Key words:  waterborne polyurethane    concrete    temperature    bonding characteristic    microstructure
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU577  
基金资助: 国家重点研发计划(2020YFC1511902);国家自然科学基金(51739008)
通讯作者:  *陈徐东,河海大学土木与交通学院教授、博士研究生导师。2007年河海大学土木工程专业本科毕业,2014年河海大学结构工程专业博士毕业。目前主要从事混凝土结构耐久性、新型建筑材料及修补加固等方面的研究工作,主持国家自然科学基金、江苏省优秀青年基金项目、国家重点研发计划项目子专题等科研课题。近年来在混凝土材料领域发表论文100余篇,包括Journal of Mate-rials in Civil Engineering(ASCE)、Construction and Building Materials、Engineering Geology、Rock Mechanics and Rock Enginee-ring、《建筑材料学报》和《复合材料学报》等期刊。cxdong1985@163.com   
作者简介:  唐建辉,2019年6月、2023年6月分别于河海大学获得硕士学位和博士学位。现为南京水利科学研究院博士后。目前主要研究领域为水工混凝土建筑物表面病害治理与防护。
引用本文:    
唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
TANG Jianhui, BAI Yin, CHEN Xudong, ZHANG Wei. Effect of Temperature on Macro- and Micro-Bonding Characteristics Between Waterborne Polyurethane and Concrete. Materials Reports, 2024, 38(4): 22060045-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060045  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22060045
1 Liu F, Zhang K K, Luo T, et al. Materials Reports, 2022, 36(8), 116 (in Chinese).
刘方, 张昆昆, 罗滔, 等. 材料导报, 2022, 36(8), 116.
2 Pan X, Shi Z, Shi C, et al. Construction and Building Materials, 2017, 132, 578.
3 He X Y, Li Y Q, Qin L D, et al. Journal of Functional Materials, 2022, 53(4), 111 (in Chinese).
何晓雁, 李毓佺, 秦立达, 等. 功能材料, 2022, 53(4), 111.
4 Zhang C, Li W H, Fan J P, et al. Concrete, 2019(12), 165 (in Chinese).
张铖, 李维红, 范金朋, 等. 混凝土, 2019(12), 165.
5 Wang Y Y, Chen L, Wang Z Q. Materials Reports, 2016, 30(9), 81 (in Chinese).
王媛怡, 陈亮, 汪在芹. 材料导报, 2016, 30(9), 81.
6 Meng Y G, Wang X Y. Surface Technology, 2018, 47(4), 274 (in Chinese).
孟永刚, 王向阳. 表面技术, 2018, 47(4), 274.
7 Chen Y, Liu Z Y, Guan H Y, et al. Materials Reports, 2021, 35(13), 13205 (in Chinese).
陈阳, 刘志勇, 管焓宇, 等. 材料导报, 2021, 35(13), 13205.
8 Somarathna H, Raman S N, Mohotti D, et al. Construction and Building Materials, 2021, 270, 121860.
9 Zhang S J, Wang R, Zhang L. Acta Materiae Compositae Sinica, 2010, 27(3), 190 (in Chinese).
张淑洁, 王瑞, 张丽. 复合材料学报, 2010, 27(3), 190.
10 Hao Y H, Xuan J Y, Ma S H, et al. Journal of Building Materials, 2021, 24(4), 794 (in Chinese).
郝贠洪, 宣姣羽, 马思晗, 等. 建筑材料学报, 2021, 24(4), 794.
11 Garbacz A, Piotrowski T, Courard L, et al. Construction and Building Materials, 2017, 134, 311.
12 Zhang H L, Yao R F, Luo W Y. Journal of Building Materials, 2009, 12(3), 292 (in Chinese).
张慧莉, 姚汝方, 雒望余. 建筑材料学报, 2009, 12(3), 292.
13 Liu M M, Han S, Pan J, et al. Materials Reports, 2018, 32(10), 1716 (in Chinese).
刘梦梅, 韩森, 潘俊, 等. 材料导报, 2018, 32(10), 1716.
14 Lin J W, Li F, Zhang D H, et al. Digital Printing, 2021(3), 130(in Chinese).
林健伟, 李菲, 张德浩, 等. 数字印刷, 2021(3), 130.
15 Dong Q X, Li S M, Zheng X G, et al. China Plastics, 2018, 32(9), 36 (in Chinese).
董全霄, 李书明, 郑新国, 等. 中国塑料, 2018, 32(9), 36.
16 Boubakri A, Elleuch K, Guermazi N, et al. Materials & Design, 2009, 30(10), 3958.
17 Standardization Administration of the People’s Republic of China. Test methods for building waterproofing coatings: GB/T 16777-2008. China Standards Press, China, 2008 (in Chinese).
中国国家标准化管理委员会. 建筑防水涂料试验方法: GB/T 16777-2008, 中国标准出版社, 2008.
18 Zeng G P, Wang L L, Dai G T, et al. New Chemical Materials, 2022, 50(1), 20 (in Chinese).
曾国屏, 王玲玲, 戴国太, 等. 化工新型材料, 2022, 50(1), 20.
19 Zhu H, Yan Z H, Xu Q, et al. Acta Polymerica Sinica, 2007(9), 892 (in Chinese).
朱宏, 颜志鸿, 徐强, 等. 高分子学报, 2007(9), 892.
20 Zhao P Z, Hu F Y, Huang X R. Engineering Plastics Application, 2011, 39(8), 32 (in Chinese).
赵培仲, 胡芳友, 黄旭仁. 工程塑料应用, 2011, 39(8), 32.
21 Li Z F, Yang G H, Li D H, et al. Spectroscopy and Spectral Analysis, 2000(3), 318 (in Chinese).
李再峰, 杨光华, 李德和, 等. 光谱学与光谱分析, 2000(3), 318.
22 Jkp A, Min O. Journal of Building Engineering, 2021, 38, 102223.
23 Zheng J. Research on the relationship between waterborne polyurethane molecular structure and the adhesive strength. Master’s Thesis, North University of China, China, 2014 (in Chinese).
郑静. 水性聚氨酯分子结构与粘结强度的关系研究. 硕士学位论文, 中北大学, 2014.
24 Sadowski Ł,Żak A, Hola J. Archives of Civil and Mechanical Enginee-ring, 2018, 18(2), 573.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[10] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[11] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[14] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[15] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed