Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22080102-6    https://doi.org/10.11896/cldb.22080102
  高分子与聚合物基复合材料 |
聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能
李杰1, 胡祖明1,2,*, 于俊荣1,2, 王彦1, 诸静1
1 东华大学材料科学与工程学院,上海 201620
2 东华大学纤维材料改性国家重点实验室,上海 201620
Preparation and Properties of Poly(p-phenylene terephthalamide) Aerogel Fibers
LI Jie1, HU Zuming1,2,*, YU Junrong1,2, WANG Yan1, ZHU Jing1
1 School of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 16520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气凝胶纤维具有良好的柔韧性,其织物在可穿戴保温隔热领域受到了人们高度的关注。聚对苯二甲酰对苯二胺(PPTA)具有优异的耐热性、耐化学品腐蚀等性能,是制备气凝胶纤维的理想材料。然而,目前利用PPTA纤维(对位芳纶)的纳米纤维分散液制备气凝胶纤维的过程复杂、耗时且成本高,因此本工作通过合成具有良好可加工性的PPTA溶液,利用湿法纺丝和冷冻干燥工艺制备PPTA气凝胶纤维,极大地简化了工艺流程。实验分析表明,通过改变PPTA溶液的浓度可以有效地控制气凝胶纤维的孔结构及机械强度。当PPTA溶液的质量分数为2%时,制得的气凝胶纤维的孔隙率高达94.5%,断裂强度可达7.8 MPa;除此之外,该气凝胶纤维还具有高的比表面积(291 m2/g)和低的热导率,其织物的热导率为29.65 mW/(m·K)。当PPTA溶液的质量分数为5%时,气凝胶纤维的断裂强度高达20.5 MPa。本工作中所制备的气凝胶纤维具有极高的孔隙率、超低的密度和热导率以及良好的力学性能,为新一代保温隔热纺织品的设计和制造开辟了新的途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李杰
胡祖明
于俊荣
王彦
诸静
关键词:  聚对苯二甲酰对苯二胺(PPTA)  湿法纺丝  气凝胶纤维  保温隔热  高温    
Abstract: Aerogel fibers have attracted tremendous attention in the field of wearable thermal insulation because of its good flexibility. Poly(p-phenylene terephthalamide) (PPTA) has excellent heat resistance, chemical resistance and other properties, and is an ideal material for preparing aerogel fibers. However, the process of preparing aerogel fibers from aramid nanofiber dispersion suffer from complex, time-consuming and costly, limiting their application in practical conditions. Here, PPTA solution with good processability was synthesized by solution polymerization at low temperature, and then the combine of wet-spinning and freeze drying was used to fabricate PPTA aerogel fibers with excellent weavability. The effects of PPTA solution concentration on the pore structure and mechanical strength of PPTA aerogel fibers were studied. The lowest thermal conductivity (29.65 mW/(m·K)) was attained when the concentration of PPTA solution was 2wt%. Meanwhile, the PPTA aerogel fibers de-monstrate superior mechanical property (7.8 MPa), high specific surface area (291 m2/g) and porosity (94.5%). When the concentration of PPTA solution increases to 5wt%, the breaking strength of the aerogel fibers can achieve 20.5 MPa. This work shows that PPTA solution prepared through the low-temperature-solution polycondensation may offer a rapid approach to achieve excellent mechanical strength, extremely high porosity, ultra-low density and thermal conductivity of PPTA aerogel fibers, allowing for cost-effective and simplified production of stronger PPTA aerogel fibers, which opens up a new way for the design and manufacture of the next generation of thermal insulation textiles.
Key words:  poly(p-phenylene terephthalamide) (PPTA)    wet-spinning    aerogel fiber    thermal insulation    high temperature
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TB324  
基金资助: 国家重点研发计划项目(2021YFB3700101)
通讯作者:  *胡祖明,东华大学材料科学与工程学院教授、博士研究生导师,纤维材料改性国家重点实验室主要研究人员。主要从事高性能纤维研究工作,先后主持和参与完成包括国家973、863、自然科学基金等国家及省部级和国内外企业委托项目30余项,研究成果获发明专利40余项,并有多项专利实现了产业化转移,在国内外学术杂志和学术会议上发表论文200余篇,包括Chemical Enginee-ring Journal、Materials Chemistry Frontiers等;先后获得国家科技进步二等奖2项、上海市科技进步一等奖3项,纺织工业协会科技一等奖和二等奖各1项,教育部科技进步二等奖1项、桑麻纺织科技二等奖1项。曾赴德国、美国、荷兰等国作访问学者或进行学术交流。hzm@dhu.edu.cn   
作者简介:  李杰,2020年6月于天津工业大学获得工学学士学位。现为东华大学材料科学与工程学院硕士研究生,在胡祖明教授的指导下进行研究。目前主要研究领域包括聚对苯二甲酰对苯二胺的合成及其多孔材料的制备、可穿戴保温隔热材料。
引用本文:    
李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
LI Jie, HU Zuming, YU Junrong, WANG Yan, ZHU Jing. Preparation and Properties of Poly(p-phenylene terephthalamide) Aerogel Fibers. Materials Reports, 2024, 38(2): 22080102-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080102  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22080102
1 Paul H L, Diller K R. Journal of Biomechanical Engineering, 2003, 125, 639.
2 Weiss P, Mohamed M P, Gobert T, et al. Advanced Materials Technologies, 2020, 5, 2000028.
3 Guo H, Meador M, McCorkle L, et al. ACS Applied Materials & Interfaces, 2011, 3, 546.
4 Rabajczyk A, Zielecka M, Popielarczyk T, et al. Materials, 2021, 14, 7849.
5 Gong P, Wang G, Tran M P, et al. Carbon, 2017, 120, 1.
6 Meng S, Zhao X, Tang C Y, et al. Journal of Materials Chemistry A, 2020, 8, 2701.
7 Kumar D, Alam M, Zou P, et al. Renewable & Sustainable Energy Reviews, 2020, 131, 110038.
8 Raeisian L, Mansoori Z, Hosseini-Abardeh R, et al. Fibers and Polymers, 2013, 14, 1748.
9 Qiao S, Kang S, Hu Z, et al. Journal of Porous Materials, 2020, 27, 237.
10 Zhang J, Cheng Y, Tebyetekerwa M, et al. Advanced Functional Materials, 2019, 29, 1806407.
11 Zhang X, Ni X, He M, et al. Materials Chemistry Frontiers, 2021, 5, 804.
12 Yang F, Zhao X, Xue T, et al. Science China Materials, 2021, 64, 1267.
13 Zhao G, Zhao H, Shi L, et al. Journal of Colloid and Interface Science, 2021, 600, 403.
14 He Z, Wu F, Guan S, et al. Journal of Materials Chemistry A, 2021, 9, 13320.
15 Mosanenzadeh S G, Karamikamkar S, Saadatnia Z, et al. Separation and Purification Technology, 2020, 250, 117279.
16 Qiao S, Zhang H, Kang S, et al. Macromolecular Materials and Engineering, 2020, 305, 2000129.
17 Zeng Z, Wu T, Han D, et al. ACS Nano, 2020, 14, 2927.
18 Guo X, Xu D, Zhao Y, et al. ACS Applied Materials & Interfaces, 2019, 11, 34766.
19 Tiryaki E, Elalmis Y B, Ikizler B K, et al. Journal of Drug Delivery Science and Technology, 2020, 56, 101517.
20 Liu Z, Zhang S, He B, et al. Cellulose, 2020, 27, 9493.
21 Yu Z L, Qin B, Ma Z Y, et al. Advanced Materials, 2019, 31, 1900651.
22 Wang S, Meng W, Lv H, et al. Carbohydrate Polymers, 2021, 270, 118414.
23 Yang W, Li X, Han X, et al. Nano Energy, 2020, 71, 104610.
24 Williams J C, Nguyen B N, McCorkle L, et al. ACS Applied Materials & Interfaces, 2017, 9, 1801.
25 Si Y, Wang X, Dou L, et al. Science Advances, 2018, 4, 8925.
26 Zhao S, Malfait W J, Guerrero-Alburquerque N, et al. Angewandte Chemie-International Edition, 2018, 57, 7580.
27 Zhao S, Malfait W J, Demilecamps A, et al. Angewandte Chemie-International Edition, 2015, 54, 14282.
28 Si Y, Yu J, Tang X, et al. Nature Communications, 2014, 5, 5802.
29 Du Y, Zhang X, Wang J, et al. ACS Nano, 2020, 14, 11919.
30 Karadagli I, Schulz B, Schestakow M, et al. Journal of Supercritical Fluids, 2015, 106, 105.
31 Hou Y, Sheng Z, Fu C, et al. Nature Communications, 2022, 13, 1227.
32 Li X, Dong G, Liu Z, et al. ACS Nano, 2021, 15, 4759.
33 Wang Z, Yang H, Li Y, et al. ACS Applied Materials & Interfaces, 2020, 12, 15726.
34 Li M, Gan F, Dong J, et al. ACS Applied Materials & Interfaces, 2021, 13, 10416.
35 Liu Y, Zhang Y, Xiong X, et al. Macromolecular Materials and Engineering, 2021, 306, 2100399.
36 Zhang X, Li N, Hu Z, et al. Chemical Engineering Journal, 2020, 388, 124310.
37 Liu Z, Lyu J, Fang D, et al. ACS Nano, 2019, 13, 5703.
38 Wang Y, Cui Y, Shao Z, et al. Chemical Engineering Journal, 2020, 390, 124623.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[4] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[5] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[6] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[7] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[8] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[9] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[10] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[11] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[12] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[13] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[14] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[15] 王玉锋, 付前刚, 杨俊, 张华, 杨岩. 热障涂层对DD6单晶燃气热腐蚀及力学性能的影响[J]. 材料导报, 2024, 38(18): 23070037-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed