Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1357-1361    https://doi.org/10.11896/j.issn.1005-023X.2018.08.028
  材料研究 |
Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响
尹雪亮1,2, 陈敏1, 王楠1, 徐磊1, 彭可武1,2
1 东北大学冶金学院,沈阳 110819;
2 辽宁科技学院辽宁省本溪低品位非伴生铁矿优化应用重点实验室,本溪 117000
Effect of Y2O3 Addition on Sintering Behavior of MA-CA2-CA6 Composite
YIN Xueliang1,2, CHEN Min1, WANG Nan1, XU Lei1, PENG Kewu1,2
1 School of Metallurgy, Northeastern University, Shenyang 110819;
2 Liaoning Key Laboratory of Optimization andUtilization of Non-associated Low-grade Iron Ore in Benxi, Liaoning Institute of Science and Technology,Benxi 117000
下载:  全 文 ( PDF ) ( 2305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为适应材料轻量化的发展需要,在1 400~1 600 ℃条件下制备了MA-CA2-CA6复合材料,并考察了添加Y2O3对该复合材料烧结行为的影响。结果表明,添加的Y2O3固溶入了CA6、MA相中,Y3+通过取代Ca2+、Mg2+有效地促进了MA晶粒的提前长大,抑制了CA6晶粒的异常长大;另一方面,添加过量的Y2O3与体系中的Al2O3反应生成Y3Al5O12新相,使得CA6相的生成量减少,同时由于MA相提前长大限制了CA6相的生长空间,进一步促进了CA6晶粒形貌由片状向等轴状趋势发展。以上因素共同作用,促进了MA-CA2-CA6复合材料的烧结行为。当Y2O3的添加量为2%时,经1 600 ℃保温2 h烧成后,试样的显气孔率由19.2%下降至4.8%,体积密度由2.78 g/cm3上升至3.24 g/cm3,制得的MA-CA2-CA6复合材料中MA、CA2、CA6及少量Y3Al5O12晶相呈现交织分布,显微结构致密,力学性能得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹雪亮
陈敏
王楠
徐磊
彭可武
关键词:  轻量化  复合材料  烧结行为  显微结构  力学性能    
Abstract: In order to adapt the demands for the lightweight of materials, MA-CA2-CA6 composite was prepared at 1 400—1 600 ℃ by addition of Y2O3 micro powder, and the effect of Y2O3 addition on densification behavior of the composite was discussed. The results showed that the added Y2O3 dissolved to CA6, MA phases by substituting Ca2+, Mg2+, which mainly promoted the growth of MA grains in advance, while the abnormal growth of CA6 grains with high aspect ratio were inhibited. Furthermore, the excess Y2O3 reacted with Al2O3 to form the Y3Al5O12 phase, which further inhibited the formation and abnormal growth of CA6 grains with high aspect ratio, and the growth of MA grains in advance occupied the growing space of CA6 grains, thus the microstructure of CA6 grains was a more equiaxed morphology, instead of anisotropic growth to platelet structure. Based on those factors, the sintering activity of MA-CA2-CA6 composite was synergistically promoted. As a result, MA-CA2-CA6 composite was obtained, with the apparent porosity decreased from 19.2% to 4.8% and the bulk density increased from 2.78 g/cm3 to 3.24 g/cm3 after firing at 1 600 ℃ for 2 h by addition of 2% Y2O3, and the crystal phase of MA, CA2, CA6 and a spot of Y3Al5O12 phases was interleaved distributed with textured microstructure in MA-CA2-CA6 composite, which is considered to be favorable to improve the mechanical properties of MA-CA2-CA6 composite.
Key words:  lightweight    composite    sintering    microstructure    mechanical properties
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TB33  
基金资助: 国家自然科学基金(51174049;51374062;51574065;51574066);辽宁省教育厅资助项目(L2015275(1506181); L2015273(1506161);L2017lkyfwdf-04)
通讯作者:  陈敏:通信作者,男,1969年生,教授,博士研究生导师,主要研究方向为复合材料 E-mail:chenm@smm.neu.edu.cn   
作者简介:  尹雪亮:男,1980年生,博士,主要研究方向为复合材料 E-mail:yxliang1007@163.com
引用本文:    
尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
YIN Xueliang, CHEN Min, WANG Nan, XU Lei, PENG Kewu. Effect of Y2O3 Addition on Sintering Behavior of MA-CA2-CA6 Composite. Materials Reports, 2018, 32(8): 1357-1361.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.028  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1357
1 De Aza A H, Iglesias J E, Pena P, et al. Ternary system Al2O3-MgO-CaO: Part Ⅱ, phase relationships in the subsystem Al2O3-MgAl2O4-CaAl4O7[J].Journal of the American Ceramic Society,2000,83(4):919.
2 Durán T, Serena S, Pena P, et al. Experimental establishment of the CaAl2O4-MgO and CaAl4O7-MgO isoplethal sections within the Al2O3-MgO-CaO ternary system[J].Journal of the American Ceramic Society,2008,91(2):535.
3 Ganesh I, Bhattacharjee S, Saha B P, et al. A new sintering aid for magnesium aluminate spinel[J].Ceramics International,2001,27(7):773.
4 Altay A, Carter C B, Rulis P, et al. Characterizing CA2 and CA6 using elnes[J].Journal of Solid State Chemistry,2010,183(8):1776.
5 Ghosh A,Das S K,Biswas J R, et al. The effect of ZnO addition on the densification and properties of magnesium aluminate spinel[J].Ceramics International,2000,26(6):605.
6 Xu L,Chen M, Huang W J, et al. Effects of CaO content on sintering and lightweight of Al2O3-MgO-CaO refractories[J].Materials Research Innovations,2015,19(S5):212.
7 徐磊,陈敏.Al2O3-MgO-CaO系耐火材料烧结性能的研究[C]∥第十七届全国冶金反应工程学学术会议论文集.中国金属学会,2013:229.
8 Yan W, Li N, Han B Q. High-strength lightweight spinel refractories[J].American Ceramic Society Bulletin,2005,84(4):9201.
9 Maschio R D, Fabbri B, Fiori C. Industrial applications of refractories containing magnesium aluminate spinel[J].Transactions of the Indian Ceramic Society,1988,8(3):121.
10 Tchamba A B, Sofack J C, Yongue R, et al. Formulation of calcium dialuminate (CaO·2Al2O3) refractory cement from local bauxite[J].Journal of Asian Ceramic Societies,2015,3(2):164.
11 Yi S, Huang Z H, Huang J T, et al. Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties[J].Scientific Reports,2014,4(4):1.
12 An L, Chan H M. R-curve behavior of in-situ-toughened Al2O3∶CaAl12O19 ceramic composites[J].Journal of the American Ceramic Society,1996,79(12):3142.
13 Li L P, Yan Y, Fan X Z, et al. Low-temperature synthesis of cal-cium-hexaluminate/magnesium-aluminum spinel composite ceramics[J].Journal of the European Ceramic Society,2015,35(10):2923.
14 Tripathi H S, Singla S, Ghosh A. Synthesis and densification beha-viour of magnesium aluminate spinel: Effect of Dy2O3[J].Ceramics International,2009,35(6):2541.
15 Sinhamahapatra S, Dana K, Ghosh A, et al. Dynamic thermal study to rationalize the role of titania in reaction sintering of magnesia-alumina system[J].Ceramics International,2015,41(1):1073.
16 Ritwik S, Tripathi H S, Ghosh A. Reaction sintering of different spinel compositions in the presence of Y2O3[J].Materials Letters,2004,58(16):2186.
17 Liu X Y, Yang D X, Huang Z H, et al. In-situ synthesis of porous calcium hexa-aluminate ceramics and growth mechanism of the plate-like grains[J].Ceramics International,2015,41(10):14727.
18 De La Iglesia P G, García-Moreno O, Torrecillas R, et al. Influence of different parameters on calcium hexaluminate reaction sintering by spark plasma[J].Ceramics International,2012,38(7):5325.
19 Ceylantekin R, Aksel C. Improvements on the mechanical properties and thermal shock behaviours of MgO-spinel composite refractories by ZrO2 incorporation[J].Ceramics International,2012,38(2):995.
20 Jonas S, Nadachowski F, Szwagierczak D, et al. Thermal expansion of CaAl4O7-based refractory compositions containing MgO and CaO additions[J].Journal of the European Ceramic Society,2006,26(12):2273.
21 Aksel C, Aksoy T. Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3mol% Y2O3[J].Ceramics International,2012,38(5):3673.
22 Diaz L A, Torrecillas R, De Aza A H, et al. Effect of spinel content on slag attack resistance of high alumina refractory castables[J].Journal of the European Ceramic Society,2007,27(16):4623.
23 Luz A P, Braulio M A L, Tomba Martinez A G, et al. Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations[J].Ceramics International,2012,38(2):1497.
24 Dominguez C, Chevalier J, Torrecillas R, et al. Microstructure development in calcium hexaluminate[J].Journal of the European Ceramic Society,2001,21(3):381.
25 Dominguez C, Torrecillas R. Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate[J].Journal of the European Ceramic Society,1998,18(9):1373.
26 Rice R W. Evaluating porosity parameters for porosity-property relations[J].Journal of the American Ceramic Society,1993,76(7):1801.
27 Dominguez C, Chevalier J, Torrecillas R, et al. Thermomechanical properties and fracture mechanisms of calcium hexaluminate[J].Journal of the European Ceramic Society,2001,21(7):907.
28 Wang W, Fu Z, Wang H, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics[J].Journal of the European Ceramic Society,2002,22(7):1045.
29 Uribe R, Baudín C. Influence of a dispersion of aluminum titanate particles of controlled size on the thermal shock resistance of alumina[J].Journal of the American Ceramic Society,2003,86(5):846.
30 Bueno S, Moreno R, Baudín C. Reaction sintered Al2O3/Al2TiO5 microcrack-free composites obtained by colloidal filtration[J].Journal of the European Ceramic Society,2004,24(9):2785.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[8] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[9] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[10] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[13] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[14] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[15] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed