Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1328-1332    https://doi.org/10.11896/j.issn.1005-023X.2018.08.023
  材料研究 |
成层式铝蜂窝夹芯结构冲击响应试验研究
罗伟铭, 石少卿, 廖瑜, 孙建虎
陆军勤务学院军事设施系,重庆 401331
An Experimental Investigation upon the Impact Response of the Layered Aluminum Honeycomb Sandwich Structure
LUO Weiming, SHI Shaoqing, LIAO Yu, SUN Jianhu
Department of Military Installations, Army Logistics University of PLA, Chongqing 401331
下载:  全 文 ( PDF ) ( 1844KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以牺牲层设计为背景,提出一种成层式铝蜂窝夹芯结构。通过两种能级的落锤冲击试验,得到不同组合试件的局部冲击响应结果。根据能量吸收、荷载峰值、冲头位移和背板挠度的对比分析,得出以下结论:结构在相对较低能级(17~83 J)的冲击作用下,除了永久塑性变形,也伴随着一定的弹性变形;同时,在芯层质量相同的前提下,可优先选择胞元较小、高度较低的蜂窝作为单层结构的芯层;全贯穿临界值应当介于83~119 J之间,在设计牺牲层时,局部冲击的极限能量设计值应当低于该临界值;芯层的相对密度对抗局部冲击性能的影响较为明显;根据牺牲层的设计标准,在本文的局部冲击试验研究范围内,AB、BA、ABA型结构在综合指标上具有相对优势。研究结果可为成层式铝蜂窝夹芯结构在防护工程中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗伟铭
石少卿
廖瑜
孙建虎
关键词:  铝蜂窝  成层式  吸能  冲击    
Abstract: The present work proposed a type of layered aluminum honeycomb sandwich structure from the perspective of sacrificial cladding designing. By drop weight impact test, the responses of the specimens with different combinations were obtained under two energy level impact. By comparing the energy absorption, peak value of impact load, displacement of impactor, deflection of specimens, some conclusions were drawn as follows: there was permanent plastic deformation accompanied by a certain degree of elasticity deformation in the structures under lower energy level (17—83 J) impact. On the premise of the same quality, the honeycomb with smaller size and smaller height should be given priority as the core of the sandwich structures. The critical value should be between 83—119 J. In the design of sacrificial cladding, the limit energy design value of local impact should be lower than the critical value; the relative density of core layer significantly influences the local impact resistance of the structure; according to the design criterion of sacrificial cladding, within the research scope of this paper, type AB, BA and ABA structures have comparative advantage according to the aggregative indicators. The results provide helpful reference for practical application of the layered aluminum honeycomb sandwich structure in protective engineering.
Key words:  aluminum honeycomb    layered    energy absorption    impact
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  O347.3  
基金资助: 国家自然科学基金(51378495;51408602)
作者简介:  罗伟铭:男,1988年生,博士研究生,主要研究方向为结构工程 E-mail:lwmofficial@163.com
引用本文:    
罗伟铭, 石少卿, 廖瑜, 孙建虎. 成层式铝蜂窝夹芯结构冲击响应试验研究[J]. 《材料导报》期刊社, 2018, 32(8): 1328-1332.
LUO Weiming, SHI Shaoqing, LIAO Yu, SUN Jianhu. An Experimental Investigation upon the Impact Response of the Layered Aluminum Honeycomb Sandwich Structure. Materials Reports, 2018, 32(8): 1328-1332.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.023  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1328
1 Wu Tingyang, Wu Jinwu. Sound insulation property of honeycomb sandwich panels[J].Materials Review B:Research Papers,2016,30(4):153(in Chinese).
吴廷洋,吴锦武.蜂窝层合板结构的隔声特性研究[J].材料导报:研究篇,2016,30(4):153.
2 Wang Chenhui, Gu Xinling, Chen Yu, et al. Study on absorbing properties of aluminum honeycomb-wood based composite materials[J].Materials Review B:Research Papers,2015,29(4):146(in Chinese).
王晨辉,顾新玲,陈羽,等.蜂窝铝-木基复合材料电磁波吸收特性研究[J].材料导报:研究篇,2015,29(4):146.
3 Ding Yuanyuan, Wang Shilong, Zheng Zhijun, et al. Anti-blast analysis of cellular sacrificial cladding[J].Journal of Explosion and Shock Waves,2017,46(3):825(in Chinese).
丁圆圆,王士龙,郑志军,等.多胞牺牲层的抗爆炸分析[J].爆炸与冲击,2017,46(3):825.
4 Aleyaasin M, Harrigan J J, Reid S R. Air-blast response of cellular material with a face plate: An analytical-numerical approach[J].International Journal of Mechanical Sciences,2015,91(47):64.
5 Langdon G S, Karagiozova D, Theobald M D, et al. Fracture of aluminium foam core sacrificial cladding subjected to air-blast loading[J].International Journal of Impact Engineering,2010,37(6):638.
6 Palanivelu S, Paepegem W V, Degrieck J, et al. Close-range blast loading on empty recyclable metal beverage cans for use in sacrificial cladding structure[J].Engineering Structures,2011,33(6):1966.
7 Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part Ⅰ—Analytical studies[J].International Journal of Impact Engineering,2000,24(9):957.
8 Guruprasad S, Mukherjee A. Layered sacrificial claddings under blast loading Part Ⅱ—Experimental studies[J].International Journal of Impact Engineering,2000,24(9):975.
9 Lin Yuliang, Zhang Zhifeng, Chen Rong, et al. Cushioning and energy absorbing property of combined aluminum honeycomb[J].Advanced Engineering Materials,2015,17(10):1434.
10 Lei Cao, Lin Yuliang, Lu Fangyun, et al. Experimental study on the shock absorption performance of combined aluminium honeycombs under impact loading[J].Shock and Vibration,2015,2015:1.
11 Luo Weiming, Shi Shaoqing, Chen Zipeng, et al. Influence of layer configuration on the energy absorption of layered aluminum honeycomb[J].Materials Review B:Research Papers,2017,31(7):82(in Chinese).
罗伟铭,石少卿,陈自鹏,等.层间配置对成层式铝蜂窝吸能特性的影响[J].材料导报:研究篇,2017,31(7):82.
12 Fu Minghui, Xu Outeng, Chen Yu. An overview of equivalent parameters of honeycomb cores[J].Materials Review A:Review Papers,2015,29(3):127(in Chinese).
富明慧,徐欧腾,陈誉.蜂窝芯层等效参数研究综述[J].材料导报:综述篇,2015,29(3):127.
13 Wang Chuang, Liu Rongqiang, Deng Zongquan, et al. Experimental and numerical studies on aluminum honeycomb structure with va-rious cell specifications under impact loading[J].Journal of Vibration and Shock,2008,27(11):56(in Chinese).
王闯,刘荣强,邓宗全,等.铝蜂窝结构的冲击动力学性能的试验及数值研究[J].振动与冲击,2008,27(11):56.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[4] 邓云飞, 赵鑫, 王中山, 冯正兴. 鞘翅仿生铝合金波纹夹芯结构冲击失效机理及吸能特性研究[J]. 材料导报, 2024, 38(24): 22080103-8.
[5] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[6] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[7] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[8] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[9] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[10] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[11] 李姝姝, 程鹏飞, 马应霞, 李广全. SEBS与β-NAs对PP的协同增韧作用及增韧机理研究[J]. 材料导报, 2024, 38(12): 23050100-8.
[12] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[13] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[14] 张奇, 张震东, 任杰, 姚琳, 吴林华. 正六边形玻璃纤维多胞结构面外准静态压缩试验[J]. 材料导报, 2023, 37(7): 21090225-8.
[15] 杨荣周, 徐颖, 刘家兴, 丁进甫, 谢昊天. 砂岩与类砂岩材料的动态力学及破坏特征对比分析[J]. 材料导报, 2023, 37(23): 22030265-11.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed