Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1318-1322    https://doi.org/10.11896/j.issn.1005-023X.2018.08.021
  材料研究 |
热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响
张建斌1, 刘帆1, 薛飞2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 苏州热工研究院有限公司,苏州 215004
Effect of Heat Treatment on Delta-ferrite and Impact Toughness of P91 Heat-resistant Steel
ZHANG Jianbin1, LIU Fan1, XUE Fei2
1 State Key Laboratory of Advanced Processing and Recyling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
2 Suzhou Nuclear Power Research Institute, Suzhou 215004
下载:  全 文 ( PDF ) ( 2543KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 P91耐热钢热加工(轧制、焊接、热处理)过程中易产生δ-铁素体,且其形态、数量和分布与热加工温度关系密切。通过设计P91耐热钢热处理工艺,在1 150 ℃、1 250 ℃、1 300 ℃温度下正火获得马氏体+δ-铁素体混合组织,并对1 300 ℃正火组织进行1 050 ℃(油冷)+760 ℃(空冷)。采用金相显微镜、显微硬度计和扫描电子显微镜等技术研究δ-铁素体数量、形态、分布的变化,并测试各热处理状态下的冲击韧性和失效模式。结果表明,P91钢随着正火温度升高,δ-铁素体数量增加;形态呈细条状、细条状+块状和多边形块状分布;1 050 ℃正火+760 ℃回火不能消除在1 300 ℃正火时产生的δ-铁素体,但能减少其数量、改变其形态与分布。随δ-铁素体含量增加冲击功减小,冲击断口形貌从韧/脆混合断裂转变为脆性断裂,边界平直的块状多边形δ-铁素体较条状形态更不利于冲击韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建斌
刘帆
薛飞
关键词:  耐热钢  热处理  δ-铁素体  冲击韧性    
Abstract: Delta-ferrite, whose morphology, content and distribution depended on hot processing temperature, readily generated in P91 heat-resistant steel during hot processing, such as hot rolling, welding and heat treatment. The mixed microstructure, including martensite and delta-ferrite, was obtained by normalizing at different temperatures (1 150 ℃,1 250 ℃,1 300 ℃) in accor-dance with the designed heat treatment processing, and the normalizing microstructure (1 300 ℃) undertook oil cooling (at 1 050 ℃)+air cooling (at 760 ℃). The content, morphology and distribution of delta-ferrite were observed by OM (optical microscope), SEM (scanning electron microscope) with EDS (energy-dispersive spectrometry), and the microhardness, impact toughness and fracture failure mode of that were tested. The results demonstrated that delta-ferrite content of P91 steel increased along with the increase of normalizing temperature, and its morphology presented thin strip, strip and bulk, and bulk polygon. The delta-ferrite generated due normalizing at 1 300 ℃ could not be eliminated by normalizing at 1 050 ℃ and tempering at 760 ℃, while the content decreased, morphology and distribution of delta-ferrite altered. The impact energy reduced with increase in delta-ferrite content, and the impact fracture failure mode converted to brittle fracture from ductile-brittle fracture. In contrast with strip morphology, the bulk polygon of delta-ferrite at boundaries was not conducive to impact toughness.
Key words:  heat-resistant steel    heat treatment    delta-ferrite    impact toughness
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG161  
通讯作者:  薛飞:通信作者,男,1975年生,博士,研究员级高级工程师,研究方向为电站用金属部件的老化、失效分析与评估 E-mail:xuefei@cgnpc.com.cn   
作者简介:  张建斌:男,1972年生,博士,副教授,研究方向为先进钢铁材料焊接和表面改性 E-mail:jbzhangjb@qq.com
引用本文:    
张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
ZHANG Jianbin, LIU Fan, XUE Fei. Effect of Heat Treatment on Delta-ferrite and Impact Toughness of P91 Heat-resistant Steel. Materials Reports, 2018, 32(8): 1318-1322.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.021  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1318
1 Lverde D, Gomez-Acebo T, Castro F. Continuous and cyclic oxidation of T91 ferritic steel under steam[J].Corrosion Science,2004,46(3):613.
2 Zhang Lifang, Zhou Yan, Qiao Zhixia,et al. Kinetics of martensite phase transformation of T91 steels during continuous cooling[J].Mater Review,2015(s2):489(in Chinese).
张丽芳,周严,乔志霞,等.T91钢连续冷却过程中马氏体相变动力学的研究[J].材料导报,2015(s2):489.
3 Yan Chaopeng, Sun Feng, Shan Aidang, et al. Research progress of ferritic heat-resistant steels used for ultra-super critical steam turbine units[J].Materials for Mechanical Engineering,2008,32(12):1(in Chinese).
闫超鹏,孙锋,单爱党,等.超超临界火电机组用铁素体耐热钢的研究现状[J].机械工程材料,2008,32(12):1.
4 Ning Baoqun, Liu Yongchang, Yin Hongqi,et al. Developement and investigation of ferritic heat resistant steels for boiler tube of the advanced power plants[J].Materials Review,2006,20(12):83(in Chinese).
宁保群,刘永长,殷红旗,等.超高临界压发电厂锅炉管用铁素体耐热钢的发展现状与研究前景[J].材料导报,2006,20(12):83.
5 Shu Guogang, Ding Hui, Liu Shutao,et al. Fracture morphology microstructure and sbu-microstructure analyses of 9Cr-1Mo-V-Nb-N steel pipe made in china[J].Electric Power,2004(7):58(in Chinese).
束国刚,丁辉,刘树涛,等.国产9Cr-1Mo-V-Nb-N钢管的断口、组织及亚结构分析[J].中国电力,2004(7):58.
6 Guo Yuanrong, Chen Yu, Zhan Yong,et al. Research on δ ferrite contained in P91 hot-rolled seamless steel tube[J].Steel Pipe,2011,40(5):17(in Chinese).
郭元荣,陈雨,詹勇,等.P91热轧无缝钢管中δ铁素体的研究[J].钢管,2011,40(5):17.
7 Zhao Lei,Yang Chao, Qiao Hanwen,et al. Effect of welding process on δ ferrite in T92/S30432 dissimilar welded joint[J].Transaction of Materials and Heat Treatment,2014,35(11):111(in Chinese).
赵雷,杨超,乔汉文,等.焊接工艺对T92/S30432异种钢接头δ铁素体的影响[J].材料热处理学报,2014,35(11):111.
8 Zhang Jianbin, Liu Fan, Fan Ding,et al. Influence of delta-ferrite content on impact toughness of joint P91 heat-resistant steel[J].Transaction of Materials and Heat Treatment,2017(3):108(in Chinese).
张建斌,刘帆,樊丁,等.δ-铁素体对P91耐热钢接头冲击性能的影响[J].材料热处理学报,2017(3):108.
9 Liu Jiangnan, Shu Guogang, Wang Zhengpin,et al. Effect of heat treatment on microstructures and properties of 12Cr-2W-Mo-V-N-B steel[J].Heat Treatment of Metals,2004(2):7(in Chinese).
刘江南,束国刚,王正品,等.12Cr-2W-Mo-V-Nb-N-B钢的热处理与组织和性能[J].金属热处理,2004(2):7.
10 Shi Ruxing,Liu Zhengdong,Zhang Caiming.Thermodynamic calculation and experimental measurement of δ ferrite amount in P92 heat resistant steel[J].Iron and Steel,2011,46(11):89(in Chinese).
石如星,刘正东,张才明.P92耐热钢δ-铁素体含量的热力学计算与试验分析[J].钢铁,2011,46(11):89.
11 Zhao Yihan, Zhao Chengzhi, Wang Jiannan, et al. Forming mechanism of δ-ferrite and its effect on martensite heat-resitant steel impact energy[J].Iron and Steel 2013,48(4):70(in Chinese).
赵义瀚,赵成志,王健楠,等.δ-铁素体形成机制以及对马氏体耐热钢冲击功的影响[J].钢铁,2013,48(4):70.
12 Anderko K, Schafer L, Materna-Morris E. Effect of the δ-ferrite phase on the impact properties of martensitic chromium steels[J].Journal of Nuclear Materials,1991,179-181:492.
13 Alkan G, Chae D, Kims J. Effect of δ-ferrite onimpact property of hot-rolled 12Cr-Ni steel[J].Materials Science & Engineering A,2013,585:39.
14 Yan W, Wang W, Shan Y, et al. 9-12Cr heat-resistant steels[M].Berlin:Springer International Publishing,2015.
15 Voort G F V, Lucas G M, Manilova E P. Metallography and microstructures of stainless steels and maraging steels[M].Ohio:The Materials Information Company,2004.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[3] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[4] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[7] 李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
[8] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[9] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[10] 李文清, 马景平, 曹睿, 徐晓龙, 杨飞, 毛兴贵, 蒋勇, 闫英杰. P91钢焊缝金属碳化物聚集程度的差异对焊缝金属冲击韧性的影响[J]. 材料导报, 2024, 38(20): 23090208-7.
[11] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[12] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[13] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[14] 张先满, 李星涛, 季坤鹏, 陈再雨, 罗洪峰. 原位生成周期性层片结构镀层及其在NaCl溶液中的腐蚀形貌[J]. 材料导报, 2024, 38(12): 22110026-7.
[15] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed