Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 51-57    https://doi.org/10.11896/j.issn.1005-023X.2018.01.006
  物理   材料综述 |材料 |
铁酸锌作为光催化剂的研究进展
侯桂芹1,2(),李云凯1,王晓燕2
1 北京理工大学材料学院,北京100081
2 华北理工大学轻工学院,唐山 063000
Research Progress of Zinc Ferrite as Photocatalyst
Guiqin HOU1,2(),Yunkai LI1,Xiaoyan WANG2
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
2 Qing Gong College, North China University of Science and Technology, Tangshan 063000
下载:  全 文 ( PDF ) ( 1187KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

铁酸锌是具有较高光催化活性及对可见光敏感的n型半导体,其独特的磁性能和化学稳定性使其在光催化领域有着广泛的应用。针对不同形貌的铁酸锌,采用不同的改性方法,可将其与其他材料结合制备出更为高效、实用的光催化剂。近年来,利用铁酸锌的特性,制备磁性可回收且性能稳定的复合光催化剂引起了科研人员的广泛关注。概述了铁酸锌作为光催化剂的基本性质,对不同形貌铁酸锌的制备方法进行了总结,并重点讨论了铁酸锌在光催化方面的改性技术及改性机理,最后对目前存在的问题和未来的研究方向做了简要的总结和预测。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯桂芹
李云凯
王晓燕
关键词:  铁酸锌  形貌  改性  光催化    
Abstract: 

Zinc ferrite is a n-type semiconductor with high photocatalytic activity and visible light sensitive, the unique magnetic properties and chemical stability make it widely used in the field of photocatalysis. For various morphology of zinc ferrite, different modification methods can be taken to make it more efficient and practical. In recent years, taking advantage of the zinc ferrite characteristics, the preparation of magnetic recovery and stable performance of the composite photocatalyst has attracted the attention of researchers. In this paper, the basic properties of zinc ferrite as photocatalyst and the preparation methods of various morphology are introduced. The modification technology and modification mechanism of zinc ferrite in photocatalysis are discussed. At the same time, the existing problems and prospects are pointed out.

Key words:  ZnFe2O4    morphology    modification    photocatalysis
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TB34  
作者简介:  侯桂芹:女,1980年生,博士研究生,讲师,主要从事光催化材料的研究 E-mail: 283636899@qq.com
引用本文:    
侯桂芹,李云凯,王晓燕. 铁酸锌作为光催化剂的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 51-57.
Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst. Materials Reports, 2018, 32(1): 51-57.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.006  或          https://www.mater-rep.com/CN/Y2018/V32/I1/51
图1  (a) ZnFe2O4的晶体结构,氧离子构成的(b)四面体单元和(c)八面体单元
图2  ZnFe2O4光催化机理示意图
图3  溶液燃烧法制备的ZnFe2O4的TEM 及HRTEM 图
图4  (a)ZnFe2O4纳米棒的磁滞回线和(b)多孔纳米棒铁酸锌的形貌图
图5  (a)花状和(b)片状铁酸锌的SEM图
图6  (a)铁酸锌纳米线扫描电镜图;(b)铁酸锌纳米管扫描电镜图
图7  中空 ZnFe2O4微球的制备过程和形成机理
Morphologies Preparation
method
Catalyst
dosage
Degradation
dyes
Degradation
time
Photocatalytic
activity
Bulk Solution combustion synthesis 0.1 g, 21.9 nm 100 mL, 10 mg/L
RhB
300 W, Xe
lamp,2 h
61.3%
Porous
nanorods
Template-surfactant-free
solvothermal method
100 mg, diameters of 100—
200 nm and lengths of
several micrometers
100 mL, 5 mg/L
MB
Sunlight,April,
10∶00—16∶00
85%
Floriated Mild hydrothermal and calcination
processes by using CTABr as a
template-directing reagent
100 mg, average length of
122 nm and diameter of
29 nm
80 mL water and
20 mL methanol
250 W,
Xe lamp, 5 h
237.87(mmol·g)/L
Flaky Mild hydrothermal and
calcination processes
100 mg 80 mL water and
20 mL methanol
250 W,
Xe lamp, 5 h
87.40(mmol·g)/L
Nanotube Anodic aluminum oxide templates
from sol-gel solution
Average diameter of
approximately 200 nm
100 mL, 10 mg/L,
4-CP
500 W,
Xe lamp, 6 h
100%
表1  不同形貌铁酸锌的制备方法及其光催化活性
图8  光照作用下不同半导体光催化剂之间的复合示意图
[1] Doh S J, Kim C, Lee S G , et al. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants[J]. Journal of Hazardous Materials, 2008,154(1-3):118.
[2] Kyung H, Lee J . Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination[J]. Environmental Science and Technology, 2005,39:2376.
[3] Liu Z Y, Bai H W, Sun D R . Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification[J]. Applied Catalysis B: Environmental, 2011,104(3-4):234.
[4] Mady A H, Baynosa M L, Tumac D , et al. Facile microwave-assisted green synjournal of Ag-ZnFe2O4@rGO nanocomposites for efficient removal of organic dyes under UV-and visible-light irradiation[J]. Applied Catalysis B: Environmental, 2017,203:416.
[5] Wang J N, Yang G R, Wang L , et al. Fabrication of the ZnFe2O4 fiber-in-tube and tubular meso porous nanostructures via single-spinneret electrospinning: Characterization, mechanism and performance as anodes for Li-ion batteries[J]. Electrochimica Acta, 2016,222:1176.
[6] Nambissan P M G, Upadhyay C, Verma H C . Positron lifetime spectroscopy studies of nanocrystalline ZnFe2O4[J]. Journal of Applied Physics, 2003,93(10):6320.
[7] Li Z H, Zou X, Li G . Preparation and photovoltaic properties of p-type nano-ZnFe2O4[J]. Journal of Chemical Research in Chinese Universities, 2012,28(4):712.
[8] Rahman M M, Khana S B, Faisal M, et al. Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods[J]. Sensors and Actuators B: Chemical , 2012, 171- 172:932.
[9] Shim J H, Lee S, Park J H , et al. Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR[J]. Physical Review B, 2006,73(6):064404.
[10] LiuH, Wei Y, Zhang Y F , et al. Study on the preparation of nanometer zinc ferrite Journal of Inorganic Materials, 2002,17(1):56(in Chinese).
[10] 刘辉, 魏雨, 张艳峰 , 等. 纳米铁酸锌的制备研究[J]. 无机材料学报, 2002,17(1):56.
[11] ZhuM Y, Liu H, Wei Y . Preparation of nano scale zinc ferrite by hydrogen peroxide and its properties Inorganic Chemicals Industry, 2007,39(8):19(in Chinese).
[11] 朱梅英, 刘辉, 魏雨 . 由氢氧化氧铁制备纳米级铁酸锌及产物性质研究[J]. 无机盐工业, 2007,39(8):19.
[12] ZhanS H, Gong C R, Chen D R , et al. Preparation of ZnFe2O4 nanofibers by sol-gel related electrospinning method[J]. Journal of Dispersion Science and Technology, 2006,27(7):931.
[13] ChenX J, Dai Y Z, Huang W K . Novel Ag3PO4/ZnFe2O4 composite photocatalyst with enhanced visible light photocatalytic activity[J]. Materials Letters, 2015,145:125.
[14] SeisukeN, Koji F, Katsuhisa T , et al. High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film[J]. Journal of Physics: Condensed Matter, 2005,17(1):137.
[15] KazantsevaN E, Bespyatykh Y I, Sapurina I , et al. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating[J]. Journal of Magnetism and Magnetic Materials, 2006,301(1):155.
[16] YangJ L, Xu M, Luo M X , et al. Research of preparation zinc ferrite from leaching zinc calcine[J].Multipurpose Utilization of Mineral Resources, 2017(1):97(in Chinese).
[16] 杨金林, 徐明, 罗美秀 , 等. 锌焙砂浸出制备铁酸锌研究[J]. 矿产综合利用, 2017(1):97.
[17] XuQ Q, Feng J T, Li L C . Hollow ZnFe2O4/TiO2 composites: High-performance and recyclable visible-light photocatalyst[J]. Journal of Alloys and Compounds, 2015,641:110.
[18] WangY N, Weng D H, Fang T , et al. Research progress on nanometer zinc ferrite photocatalytic degradation of industrial wastewater Guangzhou Chemical Industry, 2017,45(6):17(in Chinese).
[18] 王雅楠, 翁德辉, 方涛 , 等. 纳米铁酸锌光催化降解工业废水研究进展[J]. 广州化工, 2017,45(6):17.
[19] GaoH R, Song S T . Preparation of sol-gel and its photocatalytic properties of zinc ferrite Journal of Hebei Normal University of Science and Technology, 2014,28(2):69(in Chinese).
[19] 高贺然, 宋士涛 . 铁酸锌的凝胶-溶胶制备及其光催化性能[J]. 河北科技师范学院学报, 2014,28(2):69.
[20] LiF T, Li Y L, Liu R H . Rapid combustion synjournal of ZnFe2O4 and its photocatalytic activity synjournal experimental design Experimental Technology and Management, 2016,33(5):28(in Chinese).
[20] 李发堂, 李义磊, 刘瑞红 . 纳米ZnFe2O4快速燃烧合成及其光催化活性综合实验设计[J]. 实验技术与管理, 2016,33(5):28.
[21] CaiC, Zhang Z Y, Liu J , et al. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange Ⅱ in water[J]. Applied Catalysis B: Environmental , 2016,182:456.
[22] HabibiM H, Habibi A H, Zendehdel M , et al. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013,110:226.
[23] TabariT, Singh D, Jamali S S . Enhanced photocatalytic activity of mesoporous ZnFe2O4 nanoparticles towards gaseous benzene under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2017,5:931.
[24] SunB, Zhang X, Zhou G D , et al. Effect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices[J]. Journal of Alloys and Compounds, 2017,694:464.
[25] ZhouY W, Fang S S, Zhou M , et al. Fabrication of novel ZnFe2O4/BiOI nanocomposites and its efficient photocatalytic activity under visible-light irradiation[J]. Journal of Alloys and Compounds, 2017,696:353.
[26] 26Abu-Hani A F, Mahmoud S T, Awwad F , et al. Design fabrication, and characterization of portable gas sensors basedon spinel ferrite nanoparticles embedded in organic membranes[J]. Sensors and Actuators B, 2017,241:1179.
[27] ZamiriR, Salehizadeh S A, Ahangar H A , et al. Optical and magnetic properties of ZnO/ZnFe2O4 nanocomposite[J]. Materials Chemistry and Physics, 2017,192:330.
[28] SongZ W, Li X Y, Wu X L . Synjournal and characterization of strontium titanate nanocrystalline photocatalysts Experimental Technology and Management, 2013,30(9):47(in Chinese).
[28] 宋祖伟, 李旭云, 吴秀玲 . 钛酸锶纳米晶光催化剂合成及表征综合实验设计[J]. 实验技术与管理, 2013,30(9):47.
[29] SuX T, Yan Q Z, Ge C C . A new study on the synjournal of ultrafine ceramic powders by low temperature combustion Progress in Chemistry, 2005,17(3):430(in Chinese).
[29] 宿新泰, 燕青芝, 葛昌纯 . 低温燃烧合成超细陶瓷微粉的最新研究[J]. 化学进展, 2005,17(3):430.
[30] LiF T, Ran J R, Jaroniec M , et al. Solution combustion synjournal of metal oxide nanomaterials for energy storage and conversion[J]. Nanoscale, 2015,7:17590.
[31] WeiZ Q, Zhang L L, Zhang G , et al. Preparation and properties of ZnFe2O4 nanorods Journal of Synthetic Crystals, 2014,43(4):820(in Chinese).
[31] 魏智强, 张玲玲, 张歌 , 等. ZnFe2O4纳米棒的制备和性能研究[J]. 人工晶体学报, 2014,43(4):820.
[32] JiaZ G, Ren D P, Liang Y C , et al. A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity[J]. Materials Letters, 2011,65:3116.
[33] LvH J, Ma L, Zeng P , et al. Synjournal of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light[J]. Journal of Materials Chemistry, 2010,20:3665.
[34] GaoD Q, Shi Z H, Xu Y , et al. Synjournal, magnetic anisotropy and optical properties of preferred oriented zinc ferrite nanowire arrays[J]. Nanoscale Research Letters, 2010,5:1289.
[35] LiX Y, Hou Y, Zhao Q D , et al. Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol[J]. Chemosphere, 2011,82:581.
[36] ZhangJ, Zhang L X . Photocatalytic properties and preparation of hollow zinc ferrite nano materials Modern Chemical Industry, 2015,35(2):91(in Chinese).
[36] 张嘉, 张立新 . 中空铁酸锌纳米材料的制备及其光催化性能[J]. 现代化工, 2015,35(2):91.
[37] ChenX J, Dai Y Z, Liu T H , et al. Magnetic core-shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation[J]. Journal of Molecular Catalysis A: Chemical, 2015,409:198.
[38] LuF, Meng F M . Research evolution of doping modification on TiO2 photocatalyst Bulletin of the Chinese Ceramic Society, 2011,30(1):116(in Chinese).
[38] 鲁飞, 孟凡明 . TiO2光催化剂掺杂改性研究进展[J]. 硅酸盐通报, 2011,30(1):116.
[39] NuLiY N, Chu Y Q, Qin Q Z . Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2003,151(7):A1077.
[40] JiangY, Song W L, Xie C S , et al. Preparation and gas sensitivity of V doped ZnFe2O4 nanoparticles Rare Metal Materials and Engineering, 2006,35(4):617(in Chinese).
[40] 蒋勇, 宋武林, 谢长生 , 等. V掺杂纳米ZnFe2O4的制备及气敏性研究[J]. 稀有金属材料与工程, 2006,35(4):617.
[41] ChenT. Study on synthesizing and characterizing of zic ferrite nanoparticles[D]. Suzhou: Soochow University, 2012(in Chinese).
[41] 陈婷立 . 纳米铁酸锌(ZnFe2O4)的制备及其性能的研究[D]. 苏州:苏州大学, 2012.
[42] ZawarS, Atiq S, Riaz S , et al. Correlation between particle size and magnetic characteristics of Mn-substituted ZnFe2O4 ferrites[J]. Superlattices and Microstructures, 2016,93:50.
[43] LinJ, Jia Z B, Weng C D . Dispersion of nano-zinc ferrite Guangdong Chemical Industry, 2012,39(4):68(in Chinese).
[43] 林健, 贾振斌, 翁创达 . 纳米铁酸锌的分散[J]. 广东化工, 2012,39(4):68.
[44] XiaoX X, He Q Q, Cai J W , et al. Surface modification of nano zinc ferrite (ZnFe2O4) Fine Chemical Intermediates, 2007,37(3):51(in Chinese).
[44] 肖旭贤, 何琼琼, 蔡婧文 , 等. 纳米铁酸锌(ZnFe2O4)的表面改性[J]. 精细化工中间体, 2007,37(3):51.
[45] 王梦晔, 蔡建怀, 孙岚 , 等. ZnFe2O4修饰的TiO2纳米管阵列电极的制备及光催化性能[C]∥ 第十三届全国太阳能化学与光催化学术会议. 武汉, 2012.
[46] ShahidAmeer, Iftikhar Hussain Gul, Nasir Mahmood , et al. Synjournal, characterization and optical properties of in situ ZnFe2O4 functionalized rGO nano hybrids through modified solvothermal approach[J]. Optical Materials, 2015,45:69.
[47] FengJ, Wang Y T, Zou L Y , et al. Synjournal of magnetic ZnO/ZnFe2O4 by a microwave combustion method, and its high rate of adsorption of methylene blue[J]. Journal of Colloid and Interface Science, 2015,438:318.
[48] QiS Y, Zhao B C, Wu C , et al. Investigation on the preparation and photocatalytic properties study of ZnO/ZnFe2O4 Journal of Harbin University of Science and Technology, 2017,22(2):7(in Chinese).
[48] 亓淑艳, 赵博超, 吴超 , 等. 复合材料的光催化性能的研究[J]. 哈尔滨理工大学学报, 2017,22(2):7.
[49] Ran F, Mao W X, Zhao Q Y , et al. Preparation and photocatalytic properties of ZnFe2O4/polyaniline composites Journal of Zhejiang Normal University(Natural Science), 2017,40(1):64(in Chinese).
[49] 冉方, 冒卫星, 赵巧云 , 等. ZnFe2O4/聚苯胺复合材料的制备及光催化性能[J]. 浙江师范大学学报(自然科学版), 2017,40(1):64.
[50] KulkarniS D, Kumbar S, Menon S G , et al. Magnetically separable core-shell ZnFe2O4@ZnO nanoparticles for visible light photodeg-radation of methyl orange[J]. Materials Research Bulletin, 2016,77:70.
[51] HouG Q, Li Y K, An W J , et al. Fabrication and photocatalytic activity of magnetic core@shell ZnFe2O4@Ag3PO4 heterojunction[J]. Materials Science in Semiconductor Processing, 2017,63:261.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[5] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[6] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[7] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[8] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[9] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[10] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[11] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[12] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[13] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[14] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[15] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed