Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 51-55    https://doi.org/10.11896/j.issn.1005-023X.2017.08.011
  材料研究 |
海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*
谢飞1, 王丹1, 吴明1, 宗月1, 袁世娇1, 申红娟1, 李睿2
1 辽宁石油化工大学石油天然气工程学院, 抚顺 113001;
2 中石油辽宁抚顺销售分公司, 抚顺 113006
Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel
XIE Fei1, WANG Dan1, WU Ming1, ZONG Yue1, YUAN Shijiao1, SHEN Hongjuan1, LI Rui2
1 College of Petroleum Engineering, Liaoning Shihua University, Fushun 113001;
2 Petro China Liaoning Fushun Oil Marketing Company, Fushun 113006
下载:  全 文 ( PDF ) ( 1811KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用失重法、开路电位、电化学阻抗谱(EIS)、极化曲线等方法,通过在海洋环境中浸泡不同时间对比分析有无硫酸盐还原菌(SRB)条件下Q235钢的腐蚀电化学特征,研究SRB对Q235钢的腐蚀行为的影响。结果表明,在含SRB的海水中,随着浸泡时间延长,Q235钢的腐蚀电流密度先从7.49 mA·cm-2增加至9.77 mA·cm-2,然后逐渐减小至5.01 mA·cm-2,最终增加至12.6 mA·cm-2,且始终小于相同时间下无SRB海水中的腐蚀电流密度,表明SRB的存在抑制了Q235的腐蚀。在含SRB的海水中,Q235钢的腐蚀行为主要由Cl-和生物膜共同影响。在SRB稳定生长阶段,腐蚀以生物膜抑制为主;在SRB指数生长阶段和衰亡阶段,生物膜抑制作用较弱,以Cl-促进金属腐蚀为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢飞
王丹
吴明
宗月
袁世娇
申红娟
李睿
关键词:  Q235钢  海水  微生物腐蚀  硫酸盐还原菌  极化曲线    
Abstract: A comparative study focused on corrosion behavior of Q235 steel in seawater with the absence and presence of sulfate reducing bacteria (SRB) was carried out by using mass loss method, electrode open-circuit potential, electrochemical impedance spectroscopy (EIS) and polarization testing. The results showed that the corrosion current density of Q235 steel increased from 7.49 mA·cm-2 to 9.77 mA·cm-2, then gradually reduced to 5.01 mA·cm-2, and eventually increased to 12.6 mA·cm-2 as the immersion time passed in SRB-containing seawater. The corrosion current density of Q235 in SRB-containing seawater was lower than that of Q235 steel in sterile seawater, and the corrosion of Q235 steel was inhibited by SRB. In SRB-containing seawater, the corrosion behavior of Q235 steel was mainly influenced by Cl- and biofilm. During the stable growth stage of SRB, corrosion rate of the metal is mainly suppressed by biofilm. During exponential growth stage and decline stage of SRB, the effect of biofilm on Q235 steel is weak and corrosion rate of the metal is mainly promoted by Cl-.
Key words:  Q235 steel    seawater    microbiologically influenced corrosion    sulfate reducing bacteria (SRB)    polarization curve
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51574147;51604150);辽宁省博士启动资金(201601324);辽宁石油化工大学引进人才科研启动基金(2016XJJ-032)
通讯作者:  王丹:女,1984年生,博士,主要研究方向为微生物腐蚀机理 E-mail:wd841015@163.com   
作者简介:  谢飞:男,1983年生,博士,讲师,主要研究方向为油气管道腐蚀与防护技术 E-mail:370716026@qq.com
引用本文:    
谢飞, 王丹, 吴明, 宗月, 袁世娇, 申红娟, 李睿. 海洋硫酸盐还原菌对Q235钢腐蚀行为的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 51-55.
XIE Fei, WANG Dan, WU Ming, ZONG Yue, YUAN Shijiao, SHEN Hongjuan, LI Rui. Effect of Sulfate Reducing Bacteria in Seawater on Corrosion Behavior of Q235 Steel. Materials Reports, 2017, 31(8): 51-55.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.011  或          https://www.mater-rep.com/CN/Y2017/V31/I8/51
1 Ma H C, Liu Z Y, Du C W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corros Sci,2015,100:627.
2 Lerm S, Westphal A, Miethling G R, et al. Thermal effects on microbial composition and microbiologically induced corrosion and mi-neral precipitation affecting operation of a geothermal plant in a deep saline aquifer[J]. Extremophiles,2013,17(2):311.
3 Li X, Zhang D, Liu Z, et al. Materials science: Share corrosion data[J]. Nature,2015,527(7579):441.
4 Al-Jaroudi S S, Ul-Hamid A, Al-Gahtani M M. Failure of crude oil pipeline due to microbiologically induced corrosion[J]. Corros Eng Sci Technol,2011,46(4):568.
5 Romero M D, Duque Z, Rodriguez L, et al. A study of microbiolo-gically induced corrosion by sulfate-reducing bacteria on carbon steel using hydrogen permeation[J]. Corrosion,2005,61(1):68.
6 Chen S Q, Wang P, Zhang D. The influence of sulphate-reducing bacteria on heterogeneous electrochemical corrosion behavior of Q235 carbon steel in seawater[J]. Am J Archaeology,2011,103(7):739.
7 Song X X, Zhang J, Yang D F, et al.Effects of microorganism on corrosion of Zn-Al-Cd sacrificial anode in natural seawater[J].J Mater Eng,2013,3(1):58(in Chinese).
宋秀霞,张杰,杨东方,等.海水微生物对Zn-Al-Cd牺牲阳极腐蚀性能的影响[J].材料工程,2013,3(1):58.
8 Kuang F, Wang J, Yan L, et al. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel[J]. Electrochim Acta,2007,52(20):6084.
9 Zhang J, Liu F L, Li W H, et al.Effect of sulphate reducing bacteria on corrosion of Al-Zn-In-Mg-Ti anode in marine sediment[J].J Mater Eng,2011,39(4):43(in Chinese).
张杰, 刘奉令, 李伟华,等. 硫酸盐还原菌对海底泥中Al-Zn-In-Mg-Ti阳极的腐蚀影响[J]. 材料工程,2011,39(4):43.
10 Liu T, Zhang Y F, Chen X, et al. Effect of SRB on corrosion of X70 steel in simulated soil solution[J].J Chin Soc Corros Protect,2014,34(2):112(in Chinese).
刘彤,张艳飞,陈旭,等.SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J].中国腐蚀与防护学报,2014,34(2):112.
11 Liu H, Xu L, Zeng J. Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel[J]. British Corros J,2000,35(2):131.
12 Shi Y H, Liang P, Zhnag G F.Corrosion behave of low carbon steel in the typical soil of fushun[J].J Petrochem Universities,2012,25(5):59(in Chinese).
史艳华, 梁平, 张国福. 低碳钢在抚顺各典型地区土壤中的腐蚀行为[J]. 石油化工高等学校学报,2012,25(5):59.
13 Sheng X, Ting Y P, Pehkonen S O. The influence of sulphate-redu-cing bacteria biofilm on the corrosion of stainless steel AISI 316[J]. Corros Sci,2007,49(5):2159.
14 Song G L, Cao C N, Lin H C. General circuit for EIS of an irreversible electrode under electrochemical step control and parameters analysis of the circult[J]. J Chin Soc Corros Protect,1994,8(2):113(in Chinese).
宋光铃,曹楚南,林海潮.电化学控制条件下不可逆电极过程交流阻抗的统-换算电路和电化学参数解析[J].中国腐蚀与防护学报,1994,8(2):113.
15 Zhang J, Liu F L,Li W H, et al. Effects of SRB on corrosion of Zn-Al-Cd anode in marine sediment[J].Acta Metall Sin,2010,46(10):1250(in Chinese).
张杰, 刘奉令, 李伟华, 等.海泥中硫酸盐还原菌对Zn-Al-Cd牺牲阳极腐蚀的影响[J].金属学报,2010,46(10):1250.
16 Liu Z Y, Li X G, Cheng Y F. Understand the occurrence of pitting corrosion of pipeline carbon steel under cathodic polarization[J]. Electrochim Acta,2012,60:259.
17 Wan Y, Zhang D, Liu H Q, et al.Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions[J].Electrochim Acta,2010,55(5):1528.
18 Liu Z Y, Li X G, Cheng Y F. Electrochemical state conversion mo-del for occurrence of pitting corrosion on a cathodically polarized carbon steel in a near-neutral pH solution[J]. Electrochim Acta,2011,56(11):4167.
19 Gao N, Wang C, Zhang F H, et al.The influence of major ions on the corrosion of penetrating zinc steel in oil field water[J].J Petrochem Universities,2011,24(3):31(in Chinese).
高楠, 王婵, 张凤华,等. 油田采出水中主要腐蚀离子对渗锌碳钢的腐蚀[J]. 石油化工高等学校学报,2011,24(3):31.
20 Wan T, Xiao N, Shen H, et al. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation[J]. Ultrasonics Sonochemistry,2016,33:1.
21 Dong Y Y, Zhang L S, Zhang M, et al. Research on corrosion of reinforced concrete structures by chloridion in port engineering construction[C]//Applied Mechanics and Materials,2011.
22 Xu K M. Marine biofilm formation and its effect on metal corrosion[J].Marine Sci,2008,32(9):71(in Chinese).
许昆明. 海洋生物膜的形成及其对金属腐蚀的影响[J]. 海洋科学,2008,32(9):71.
23 Du J, Li S M, Liu J H, et al.Corrosion behavior of steel A3 inf-luenced by bacillus[J].Acta Physico-Chimica Sinica,2010,26(6):1527(in Chinese).
杜娟, 李松梅, 刘建华,等. A3钢在芽孢杆菌作用下的腐蚀行为[J].物理化学学报,2010,26(6):1527.
24 Li S M, Wang L F, Du J, et al.Corrosion behavior and electroche-mical character of Q235 carbon steel in the presence of penicillium[J].J University of Science and Technology Beijing,2013,35(3):339(in Chinese).
李松梅, 王力锋, 杜娟,等. Q235钢在青霉菌作用下的腐蚀行为和电化学特性[J].北京科技大学学报,2013,35(3):339.
25 Zhang J, Song X X, Luan X, et al. Effects of shewanella algae on corrosion of Zn-Al-Cd anode[J].Acta Metall Sin,2012,48(12):1495(in Chinese).
张杰, 宋秀霞, 栾鑫,等. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报,2012,48(12):1495.
[1] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[2] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[3] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[4] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[5] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[6] 孙启萌, 孙淼, 祁艳菲, 金国庆, 周兴海, 吕丽华, 魏春艳, 高原. 三维光热蒸发器结构设计理念研究进展[J]. 材料导报, 2024, 38(14): 23030100-9.
[7] 李雪, 周明宇, 韩朋, 戚桂村, 高达利, 陶胜洋, 王玉超. 高效太阳能驱动海水淡化的最新研究进展[J]. 材料导报, 2024, 38(13): 22110120-16.
[8] 朱德举, 初开丹, 郭帅成, 史才军. 基于海水海砂混凝土真实孔溶液浸泡环境下BFRP筋拉伸性能的退化[J]. 材料导报, 2024, 38(11): 23030043-8.
[9] 许兵, 姚兴洁, 刘佳, 张旭, 杨晓彤, 郭培勋, 张新玉. 面向太阳能界面蒸发的纳米光热材料与系统设计研究[J]. 材料导报, 2023, 37(S1): 23030028-8.
[10] 陈宗平, 黎盛欣, 周济, 戴上秦. 海洋环境GFRP筋海水海砂混凝土梁受力性能试验及承载力计算[J]. 材料导报, 2023, 37(20): 22040207-10.
[11] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[12] 刘晋铭, 张寿松, 俞煌, 梅勇. 砂胶比对海水拌合全珊瑚骨料混凝土动态力学性能的影响[J]. 材料导报, 2023, 37(18): 22010233-7.
[13] 姜万珩, 张奇亮, 牛璐, 刘梁, 黄一, 徐云泽. 921A高强碳素钢在天然流动海水中的腐蚀行为[J]. 材料导报, 2023, 37(18): 22030153-8.
[14] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[15] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed