Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 26-31    https://doi.org/10.11896/j.issn.1005-023X.2017.07.004
  材料综述 |
提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*
吴艳光1,羿庄城1,葛震2,杜飞鹏1,张云飞1
1 武汉工程大学材料科学与工程学院,武汉 430074;
2 北京理工大学材料学院,北京 100081
The Latest Research Progress in Improving the Conductivity of PEDOT∶PSS
WU Yanguang1, YI Zhuangcheng1, GE Zhen2, DU Feipeng1, ZHANG Yunfei1
1 School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430074;
2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
下载:  全 文 ( PDF ) ( 1499KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着能源危机和环境污染问题的日益严峻,近年来热电材料的研究越来越受到人们的关注。聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸(PEDOT∶PSS)被认为是热电性能最好的有机热电材料之一。PEDOT∶PSS具备好的成膜性、高的透明性、优异的电导可控性以及热稳定性。系统地综述了提高PEDOT∶PSS电导率的一些物理、化学方法,探讨了其电导率增强的机理以及介绍了其目前最新的应用情况。预期未来具有高电导率和高透明性的PEDOT∶PSS薄膜材料的研究将得到突破性发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴艳光
羿庄城
葛震
杜飞鹏
张云飞
关键词:  热电材料  导电聚合物  聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸  电导率    
Abstract: With the energy crisis and the increasingly severe environmental pollution problems, research for thermoelectric(TE) materials have provoke wide attention in recent years. Among organic TE materials, poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) (PEDOT∶PSS) is considered as the one of the best organic TE materials. It has good film forming properties, high transparency, excellent tunable conductivity and thermal stability. In this paper, various physical and chemical approaches that can effectively improve the electrical conductivity of PEDOT∶PSS are summarized, focusing especially on the mechanism of the conductivity enhancement as well as applications of PEDOT∶PSS flms. It is expected that future research of highly conductive and transparent PEDOT∶PSS films can be developed greatly.
Key words:  thermoelectric material    conductive polymer    poly(3    4-ethylenedioxythiophen-e)∶poly(styrenesulfonate)    electronic conductivity
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  O631  
  TB34  
基金资助: *国家自然科学基金(51373126)
作者简介:  吴艳光:男,1983年生,博士,讲师,主要研究方向为功能高分子材料的制备与性能E-mail:wygddxyz@163.com
引用本文:    
吴艳光,羿庄城,葛震,杜飞鹏,张云飞. 提高聚(3,4-乙撑二氧噻吩)∶聚苯乙烯磺酸电导率的最新研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 26-31.
WU Yanguang, YI Zhuangcheng, GE Zhen, DU Feipeng, ZHANG Yunfei. The Latest Research Progress in Improving the Conductivity of PEDOT∶PSS. Materials Reports, 2017, 31(7): 26-31.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.004  或          https://www.mater-rep.com/CN/Y2017/V31/I7/26
1 Wang D G, Wang L, Wang W X, et al. Development of polythiophene and its derivatives as thermoelectric materials[J]. Mater Rev: Rev,2012,26(4):74(in Chinese).
王大刚,王雷,王文馨,等. 聚噻吩及其衍生物热电材料研究进展[J].材料导报:综述篇,2012, 26(4):74.
2 Li L, Chen Z, Zhou M, et al. Developments in semiconductor thermoelectric materials[J]. Frontiers Energy, 2011,5:125.
3 He M, Qiu F, Lin Z. Towards high-performance polymer-based thermoelectric materials[J]. Energy Environ Sci,2013,6:1352.
4 Dubey N, Leclerc M. Conducting polymers: Efficient thermoelect-rials[J]. J Polym Sci Part B: Polym Phys,2011, 49: 467.
5 Ouyang J Y. “Secondary doping” methods to significantly enhance the conductivity of PEDOT∶PSS for its application as transparent electrode of optoelectronic devices[J]. Displays,2013,34(5):423.
6 Shi H, Liu C C, Jiang Q L, et al. Effective approaches to improve the electrical conductivity of PEDOT∶PSS: A review[J]. Adv Electron Mater,2015,1(4):0282.
7 Moujoud A, Oh S H, et al. On the mechanism of conductivity enhancement and work function control in PEDOT∶PSS film through UV-light treatment[J]. Appl Mater Sci,2010,207(7):1704.
8 Badre C, Marquant L, Alsayed A M, et al. Highly conductive poly(3,4-ethylenedioxythiophene)∶poly (styrenesulfonate) films using 1-ethyl-3-methylimidazolium tetracyanoborate ionic liquid[J]. Adv Funct Mater,2012,22(13):2723.
9 Xia Y J, Ouyang J Y. Anion effect on salt-induced conductivity enhancement of poly(3,4-ethyle-nedioxythiophene)∶poly(styrenesulfonate) films[J]. Org Electron,2010,11(6):1129.
10 Xia Y J, Zhang H M, Ouyang J Y. Highly conductive PEDOT∶PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells[J]. J Mater Chem,2010,20(43):9740.
11 Coates N, Yee K, McCulloch B, et al. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport[J]. Adv Mater,2013,25(11):1629.
12 Yu C, Choi K, Yin L, et al. Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors [J]. ACS Nano,2011,5(10):7885.
13 Moriarty G, De S, King P, et al. Thermoelectric behavior of organic thin film nanocomposites [J]. J Polym Sci Part B: Polym Phys,2013,51(2):119.
14 Kim G, Hwang D, Woo S. Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene [J]. Phys Chem Chem Phys,2012,14(10):3530.
15 Lin Y J, Yang F M, et al. Increasing the work function of poly(3,4-ethylenedioxyt-hiophene) doped with poly(4-styrenesulfonate) by ultraviolet irradiation[J]. Appl Phys Lett,2007,91(9):092127.
16 Benor A, Takizawa S Y, et al. Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT∶PSS using UV-ozone exposure[J]. Org Electron, 2010,11(5):938.
17 Xu X J, Yang L Y, Tian H, et al. Enhanced performance and stabi-lity in polymer photovoltaic cells using ultraviolet-treated PEDOT∶PSS[J].Chinese Phys Lett,2013,30(7):077201.
18 Huang J, Miller P F, de Mello J C, et al. Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films[J]. Synth Metals,2003,139(3):569.
19 Kim H J, Yang J S, Oh S H. Modified PEDOT∶PSS with organic solvent and organic solar cells using it: KR, 20130027213[P].2013-03-15.
20 Kim H J, Yang J S, Oh S H. High conductive PEDOT∶PSS thin film added acetone and organic solar cells using it: KR, 20130130901[P].2013-12-03.
21 Kim J, Jung J, Lee D, et al. Enhancement of electrical conductivity of poly(3,4-ethylenediox-ythiophene)/poly(4-styrenesulfonate) by a change of solvents[J]. Synth Metals,2002,126(2): 311.
22 Liu Yuan. Preparation and characterization of PEDOT∶PSS-based thermoelectric composites[D]. Shanghai: Donghua University,2016(in Chinese).
刘原. PEDOT∶PSS 基复合热电材料的制备与性能表征[D].上海:东华大学,2016.
23 Ouyang J, Yang Y. Conducting polymer as transparent electric glue[J]. Adv Mater,2006,18(16):2141.
24 Shi H, Liu C C, Xu J K,et al. Facile fabrication of PEDOT∶PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance[J]. ACS Appl Mater Interfaces,2013,5(24):12811.
25 Thomas J P, Zhao L, McGillivray D, et al. High-efficiency hybrid solar cells by nanostructural modification in PEDOT∶PSS with co-solvent addition[J]. J Mater Chem A,2014,2(7):2383.
26 Wei Q S, Mukaida M, Naitoh Y, et al. Morphological change and mobility enhancement in PEDOT∶PSS by adding co-solvents[J]. Adv Mater,2013,25(20):2831.
27 Thomas J P, Leung K T. Defect-minimized PEDOT∶PSS/planar-Si solar cell with very high efficiency[J]. Adv Funct Mater,2014,24(31):4978.
28 Martin B D, Nikolov N, Pollack S K, et al. Hydroxylated secondary dopants for surface resistance enhancement in transparent poly(3,4 ethylenedioxythiophene)-poly(styrenesulfon-ate) thin films[J]. Synth Metals,2004,142(1):187.
29 Makinen A J, Hil I G, Shashidhar R, et al. Hole injection barriers at polymer anode/small molecule interfaces[J]. Appl Phys Lett,2001,79(5):557.
30 Nardes A M, Janssen R A J, Kemerink M. A morphological model for the solvent-enhanced conductivity of PEDOT∶PSS thin films[J].Adv Funct Mater,2008,18(6):865.
31 Huang C J, Chen K L, Tsao Y J, et al. Study of solvent-doped PEDOT∶ PSS layer on small molecule organic solar cells[J]. Synth Metals,2013,164(15):38.
32 Lee M W, Lee M Y, et al. Fine patterning of glycerol-doped PEDOT∶PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs[J].Org Eectron,2010,11(5):854.
33 Wu H B, Zou J H, et al. A new approach to efficiency enhancement of polymer light-emitting diodes by deposition of anode buffer layers in the presence of additives[J]. Org Electron,2009,10(8):1562.
34 Emin D. Semiclassical small-polaron hopping in a generalized mole-cular-crystal model[J]. Phys Rev B,1991,43:11720.
35 Sankir N D. Selective deposition of PEDOT/PSS on to flexible substrates and tailoring the electrical resistivity by post treatment[J]. Circuit World, 2008, 34(4): 32.
36 Okuzaki H, Harashina Y, Yan H. Highly conductive PEDOT/PSS microfibers fabricated by wet-spinning and dip-treatment in ethylene glycol[J]. Eur Polym J,2009,45(1):256.
37 Ely F, Matsumoto A, et al. Handheld and automated ultrasonic spray deposition of conductive PEDOT∶PSS films and their application in AC EL devices[J]. Org Electron,2014, 15(5):1062.
38 Alemu D, Wei H Y, Ho K C, et al. Highly conductive PEDOT∶PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells [J]. Energy Environ Sci,2012,5(11): 9662.
39 Palumbiny C M, Heller C, Schaffer C J, et al. Molecular reorientation and structural changes in cosolvent-treated highly conductive PEDOT∶PSS electrodes for flexible indium tin oxide-free organic electronics[J]. J Phys Chem C,2014,118(25):13598.
40 Dimitriev O P, Grinko D A, Noskov Y V, et al. PEDOT∶PSS films-effect of organic solvent additives and annealing on the film conductivity[J]. Synth Metals,2009,159(21):2237.
41 Yeo J S, Yun J M, Kim D Y, et al. Significant vertical phase separation in solvent-vapor-annealed poly(3,4-ethylenedioxythiophene)∶poly(styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics-[J]. ACS Appl Mater Interfaces,2012,4(5):2551.
42 Fan B H, Mei X G, Ouyang J Y. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) films by adding anionic surfactantsinto polymer solution[J]. Macromolecules,2008,41(16):5971.
43 Tevi T, Saint Birch S W, Thomas S W, et al. Effect of triton X-100 on the double layer capacitance and conductivity of poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) (PEDOT∶PSS) films[J]. Synth Metals,2014,191:59.
44 Oh J Y, Shin M K, Lee J B, et al. Effect of PEDOT nanofibril networks on the conductivity, flexibility,and coatability of PEDOT∶PSS films[J]. ACS Appl Mater Interfaces,2014,6(9):6954.
45 Mengistie D A, Wang P C, Chu C W, et al. Highly conductive PEDOT∶PSS electrode treated with polyethylene glycol for ITO-free polymer solar cells organic and DSS cells[J]. ECS Transactions,2013,58(11):49.
46 Dobbelin D, Marcilla R, Salsamendi M, et al. Influence of ionic li-quids on the electrical conductivity and morphology of PEDOT∶PSS films[J]. Chem Mater,2007,19(9):2147.
47 Liu C C, Xu J K, et al. Simultaneous increases in electrical conductivity and seebeck coefficient of PEDOT∶PSS films by adding ionic liquids into a polymer solution[J]. J Electron Mater,2012,41(4):639.
48 Luo J J, Billep D, Waechtler T, et al. Enhancement of the thermoelectric properties of PEDOT∶PSS thin films by post-treatment[J]. J Mater Chem A,2013,1(26):7576.
49 Ouyang J. Solution-processed PEDOT∶PSS films with conductivities as indiumtin oxide through a treatment with mild and weak organic acids [J]. ACS Appl Mater Interfaces,2013, 5(24):13082.
50 Cruz-Cruz I, Reyes-Reyes M, et al. Formation of polystyrene sulfonic acid surface structures on poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate) thin films and the enhancement of its conductivity by using sulfuric acid[J]. Thin Solid Films,2013,531:385.
51 Aleshin A N, Williams S R, Heeger A J. Transport properties of poly(3,4-ethylenedioxythioph-ene)/poly(styrenesulfonate) [J]. Synth Metals,1998,94(2):173.
52 Kong F F, Liu C C, Song H J, et al. Effect of solution pH value on thermoelectric performance of free-standing PEDOT∶PSS films[J]. Synth Metals,2013,185:31.
53 Mukherjee S, Singh R, Gopinathan S, et al. Solution-processed poly(3,4-ethylenedioxythiophe-ne) thin films as transparent conductors: Effect of p-toluenesulfonic acid in dimethyl sulfoxide [J]. ACS Appl Mater Interfaces,2014,6(20):17792.
54 Kim G H, Shao L, Zhang K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency [J]. Nat Mater,2013,12,719.
55 Alemu Mengistie D, Wang P C, Chu C W. Effect of molecular weight of additives on the conductivity of PEDOT∶PSS and efficiency for ITO-free organic solar cells[J]. J Mater Chem A,2013,1(34):9907.
56 Cai M, Ye Z, Xiao T, et al. Extremely efficient indium-tin-oxide-free green phosphorescent organic light-emitting diodes[J]. Adv Mater,2012,24(31):4337.
57 Xia Y J, Sun K, Ouyang J Y. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices[J]. Adv Mater,2012,24(18):2436.
58 Hokazono M, Anno H, Toshima N. Thermoelectric properties and thermal stability of PEDOT∶PSS films on a polyimide substrate and application in flexible energy conversion devices[J]. J Electron Mater,2014,43(6):2196.
[1] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[2] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[3] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[4] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[5] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[6] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[7] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[8] 王海川, 张晨, 雷杰, 吴婷. 钢铁冶金熔渣电导率测试技术及应用进展[J]. 材料导报, 2023, 37(20): 22030056-7.
[9] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[10] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[11] 史燃, 张翔宇, 南波航, 徐桂英. Cu2Se热电忆阻器模拟计算与性能表征[J]. 材料导报, 2023, 37(13): 22010058-7.
[12] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[13] 董源, 徐桂英. GeTe热电材料的研究和进展[J]. 材料导报, 2022, 36(3): 20080307-10.
[14] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[15] 宋金涛, 刘海涛, 宋克兴, 安士忠, 程楚, 华云筱, 周延军, 张凌亮, 王国杰, 田安福, 杨璐瑶. 稀土铈与磷相互作用对纯铜晶粒尺寸和导电性能的影响[J]. 材料导报, 2021, 35(z2): 329-332.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed