Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 143-149    https://doi.org/10.11896/j.issn.1005-023X.2017.07.022
  先进结构复合材料 |
LGF/PBT/RP复合材料的玻纤长度与阻燃性能的相关性研究*
赵婉1,何敏1,2,张道海1,2,黄涛1,张丽1
1 贵州大学材料与冶金学院,贵阳 550025;
2 国家复合改性聚合物材料工程技术研究中心,贵阳 550014
Correlation Between Glass Fiber Length and Flame Retardant Properties of LGF/PBT/RP Composites
ZHAO Wan1, HE Min1,2, ZHANG Daohai1,2, HUANG Tao1, ZHANG Li1
1 College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025;
2 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014
下载:  全 文 ( PDF ) ( 2191KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同长度的长玻纤增强聚对苯二甲酸丁二醇酯/红磷 (LGF/PBT/RP) 阻燃复合材料,通过光学显微镜、燃烧性能测试、扫描电镜(SEM)、动态热机械分析(DMA)和力学性能测试等研究了玻纤长度与阻燃性的相关性。结果表明:随着玻纤长度增加,LGF/PBT/RP阻燃复合材料中玻纤的实际有效长度分布先向玻纤较长区域移动再向玻纤较短区域移动,玻纤在该基体中开始呈现均匀分散后逐渐出现团聚现象,且LGF/PBT/RP阻燃复合材料的垂直燃烧(UL-94)的燃烧时间、平均热释放速率 (Av-HRR)、总烟释放量(TSR)、总热释放量(THR)、平均有效燃烧热(Av-EHC)和火蔓延指数(FIGRA)呈先减小后增大的趋势,极限氧指数(LOI)则呈先增大后减小的趋势。这表明玻纤的实际有效长度增大,有助于提高LGF/PBT/RP阻燃复合材料的阻燃性能,即玻纤长度对LGF/PBT/RP阻燃复合材料的阻燃性有影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵婉
何敏
张道海
黄涛
张丽
关键词:  长玻纤  阻燃  聚对苯二甲酸丁二醇酯  有效长度  复合材料  拔出长度    
Abstract: The relationship between the glass fiber length and flame retardant of LGF/PBT/RP composites was studied. According to the analysis of optical microscope,combustion properties test, scanning electron microscope (SEM), dynamic thermomechanical analysis (DMA) and mechanical properties, it was found that with the initial length of glass fiber increasing, the effective fiber length distribution of LGF/PBT/RP composites firstly moved toward the longer region of glass fiber, then moved toward the shorter area of glass fiber.Moreover, the dispersion of glass fibers of LGF/PBT/RP composites turned from homogeneous to uneven. With increase of the length of glass fiber, the burning time of vertical burning test (UL-94), average heat release rate (Av-HRR), total smoke release (TSR), total heat release (THR), average effective heat of combustion(Av-EHC) and fire growth rate(FIGRA)of LGF/PBT/RP composite firstly decreased and then increased. The change trend of limiting oxygen index(LOI) was opposite. This behavior indicated that with the effective length of glass fiber increasing, the flame retardant performance of LGF/PBT/RP compo-site was improved, namely, the glass fiber length had an effect on flame retardant performance of LGF/PBT/RP composite.
Key words:  long glass fiber    flame retardance    polybutylene terephthalate    effective length    composites    pull-out length
出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB33  
基金资助: *贵州省科技计划项目(黔科合重大专项字(2015)6005号;黔科合KY字[2015]359;黔科合人才[2016]5346号);贵州省科技厅科技联合基金项目(黔科合LH字[2015]7708);贵州大学研究生创新基金(研理工2016021);贵州省科技计划项目(黔科合成果(2016)4526;黔科合成果[2016]4535)
通讯作者:  张道海,男,1981年生,博士,副研究员,主要从事高性能复合材料研究及应用E-mail:zhangdaohai6235@163.com   
作者简介:  赵婉:女,1990年生,硕士研究生,主要从事聚合物阻燃材料研究及应用
引用本文:    
赵婉,何敏,张道海,黄涛,张丽. LGF/PBT/RP复合材料的玻纤长度与阻燃性能的相关性研究*[J]. 《材料导报》期刊社, 2017, 31(7): 143-149.
ZHAO Wan, HE Min, ZHANG Daohai, HUANG Tao, ZHANG Li. Correlation Between Glass Fiber Length and Flame Retardant Properties of LGF/PBT/RP Composites. Materials Reports, 2017, 31(7): 143-149.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.022  或          https://www.mater-rep.com/CN/Y2017/V31/I7/143
1 Gao F, Tong L, Fang Z. Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate)[J]. Polym Degrad Stab,2006,91(91):1295.
2 Yang W, Hu Y, Tai Q, et al. Fire and mechanical performance of nanoclay reinforced glass-fiber/PBT composites containing aluminum hypophosphite particles[J]. Composites Part A:Appl Sci Manufacturing,2011,42(7):794.
3 Huang Qian. The preparation and performance research of halogen-free flame retardant PBT engineering plastics [D].Guangzhou: South China University of Technology,2011(in Chinese).
黄倩. 无卤阻燃PBT工程塑料的制备与性能研究[D]. 广州:华南理工大学,2011.
4 Lang Liuchun, Ye Nanbiao, Li Jianjun, et al. Flame retardancy and thermal stability of halogen-free flame retardant PBT [J]. Plastics Sci Technol,2010,38(6):49(in Chinese).
郎柳春, 叶南飚, 李建军,等. 无卤阻燃PBT的阻燃性及热稳定性[J]. 塑料科技,2010, 38(6):49.
5 Hartikainen J, Hine P, Szabo J S. Polypropylene hybrid composites reinforced with long glass fibers and particulate filler[J]. Compos Sci Technol,2005,65(2):257.
6 Chattopadhyay S K, Khandal R K, Uppaluri R, et al. Influence of varying fiber lengths on mechanical, thermal, and morphological properties of MA-g-PP compatibilized and chemically modified short pineapple leaf fiber reinforced polypropylene composites[J]. J Appl Polym Sci,2009,113(6):3750.
7 Yang B, Leng J, He B, et al. Influence of fiber length and compatibilizer on mechanical properties of long glass fiber reinforced polya-mide 6,6[J]. J Reinforced Plastics Compos, 2012,31(16):1103.
8 Tao Z, Wang Y, Li J, et al. Fabrication of long glass fiber reinforced polyacetal composites: Mechanical performance, microstructures, and isothermal crystallization kinetics[J]. Polym Compos,2014,36(10):1826.
9 Huang Huilong. Study on long glass fiber reinforced nylon 66 Composites [D]. Guangzhou:South China University of Technology, 2013(in Chinese).
黄惠龙. 长玻纤增强尼龙66复合材料的研究[D]. 广州:华南理工大学, 2013.
10 Casu A, Camino G, Giorgi M D, et al. Effect of glass fibres and fire retardant on the combustion behaviour of composites, glass fibres-poly(butylene terephthalate)[J]. Fire Mater, 1998,22(1):7.
11 Liu Y, Yi J S, Cai X F. Application of a novel halogen-free intumescent flame retardant for acrylonitrile-butadiene-styrene [J]. J Appl Polym Sci,2012,124(2):1475.
12 Ou Yuxiang, Liu Zhiguo, Wu Junhao. Combustion behavior and flame retardant synergism of PA6 flame-retarded with melamine polyphosphate and melamine octomolybdate[J]. J Beijing Institute of Technology,2004,24(9):829(in Chinese).
欧育湘, 刘治国, 吴俊浩. 聚磷酸蜜胺与八钼酸蜜胺阻燃PA6的燃烧行为及协同作用[J]. 北京理工大学学报,2004,24(9):829.
13 Jian R K, Chen L, Hu Z, et al. Flame-retardant polycarbonate/acrylonitrile-butadiene-styrene based on red phosphorus encapsulated by polysiloxane: Flame retardance, thermal stability, and water resistance [J]. J Appl Polym Sci,2012,123(5):2867.
14 Balabanovich A I, et al. Fire retardance in poly(butylene terephthalate). The effects of red phosphorus and radiation-induced cross-links[J]. Macromolecular Mater Eng,2004,289(2):181.
15 He B, Liu H, Leng J, et al. Mechanical properties of long glass fiber-reinforced polypropylene composites and their influence factors[J]. J Reinforced Plastics Compos,2011,30(3):222.
16 Essabir H, Elkhaoulani A, Benmoussa K, et al. Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites [J]. Mater Des,2013,51(5):780.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[11] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[12] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[15] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed