Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 193-197    https://doi.org/10.11896/j.issn.1005-023X.2017.023.029
  第一届先进胶凝材料研究与应用学术会议 |
镍渣/偏高岭土基地聚合物的制备与表征*
张长森1, 朱宝贵1, 2, 李杨1, 3, 冯桢哲1, 2, 王毓1, 胡志超1, 2
1 盐城工学院材料科学与工程学院,盐城 224051;
2 江苏大学材料科学与工程学院,镇江 212000;
3 常州大学材料科学与工程学院,常州 213164
Preparation and Characterization of Nickel Slag/Metakaolin Based Geopolymer
ZHANG Changsen1, ZHU Baogui1, 2, LI Yang1, 3, FENG Zhenzhe1, 2, WANG Yu1, HU Zhichao1, 2
1 School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051;
2 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212000;
3 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
下载:  全 文 ( PDF ) ( 1357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以工业固体废弃物镍渣和偏高岭土为原料,以水玻璃为激发剂,在相同稠度下制备镍渣/偏高岭土基地聚合物。研究了镍渣种类和掺量对地聚合物力学性能和体积变化的影响,测定了地聚合物的碱溶出情况,并利用XRD、SEM-EDS对地聚合物的矿物组成和微观形貌进行分析。结果表明:随着水淬镍渣掺量的增大,地聚合物的抗压强度先增大后降低,在镍渣掺量为50%、液固比为0.45时,地聚合物的抗压强度最大,28 d达到58.8 MPa;而随着风冷镍渣掺量的增大,地聚合物的强度逐渐降低。此外,水淬镍渣/偏高岭土基地聚合物的体积变化主要表现为膨胀,而风冷镍渣/偏高岭土基地聚合物表现为收缩。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张长森
朱宝贵
李杨
冯桢哲
王毓
胡志超
关键词:  镍渣  偏高岭土  地聚合物  体积变化  力学性能    
Abstract: A series of nickel slag/metakaolin based geopolymer were prepared under the same consistency using industrial solid waste nickel slag and metakaolin as raw materials, water glass as activator. The effect of nickel slag type and content on the mechanical properties and volume change of the geopolymer were studied. The alkali dissolution of geopolymer was characterized by pH analyzer, the mineral composition and microstructure of the geopolymer were analyzed by XRD and SEM-EDS. With the increase of the amount of water-hardening nickel slag, the compressive strength of geopolymer first increased and then decreased. The compressive strength of the geopolymer with 50% nickel slag and 0.45 liquid/solid ratio reached the maximum value (58.8 MPa(28 d)). The incorporation of air quench reduced the compressive strength. In addition, water-hardening nickel slag/metakaolin geopolymer had a expansion behavior, air quench nickel/metakaolin geopolymer had a shrinkage behavior.
Key words:  nickel slag    metakaolin    geopolymer    volume change    mechanical properties
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.041  
基金资助: *国家自然科学基金(51672236); 江苏省生态建材与环保装备协同创新中心和江苏省新型环保重点实验室联合资助(CP201506)
作者简介:  张长森:男,1957年生,教授,硕士研究生导师,主要从事无机非金属材料和固废利用等方面的研究 E-mail:zcs@ycit.cn
引用本文:    
张长森, 朱宝贵, 李杨, 冯桢哲, 王毓, 胡志超. 镍渣/偏高岭土基地聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(23): 193-197.
ZHANG Changsen, ZHU Baogui, LI Yang, FENG Zhenzhe, WANG Yu, HU Zhichao. Preparation and Characterization of Nickel Slag/Metakaolin Based Geopolymer. Materials Reports, 2017, 31(23): 193-197.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.029  或          https://www.mater-rep.com/CN/Y2017/V31/I23/193
1 Li X M, Shen M, Wang C, et al. Current situation and development of comprehensive utilization of nickel slag[J]. Mater Rev: Rev, 2017, 31(3): 100 (in Chinese).
李小明, 沈苗, 王翀, 等. 镍渣资源化利用现状及发展趋势分析[J]. 材料导报:综述篇, 2017, 31(3): 100.
2 Young Cheol Choi, et al. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Constr Build Mater, 2015, 99: 279.
3 Wu Q S, Guang J M, Zhu H J, et al. Mechanochemical effect of nickel slag and its impact on reactive activity[J]. Mater Sci Technol, 2016,24(3): 22(in Chinese).
吴其胜, 光鉴淼, 诸华军, 等. 镍渣机械力化学效应及其对反应活性的影响[J].材料科学与工艺, 2016,24(3): 22.
4 Feng Z Z, Wu Q S, Zhang C S, et al. Preparation and properties of nickel slag based foam glass[J]. Bull Chin Ceram Soc, 2017, 36(5):1740 (in Chinese).
冯桢哲, 吴其胜, 张长森, 等.镍渣基泡沫玻璃的制备及其性能研究[J]. 硅酸盐通报, 2017, 36(5): 1740.
5 Yang Tao, Yao Xiao, Zhang Zuhua. Geopolymer prepared with high-magnesium nickel slag:Characterization of properties and microstructure[J]. Constr Build Mater, 2014, 59(6): 188.
6 Davidovits J. The ancient egyptian pyramids-concrete or rock[J]. Concr Int, 1987, 12: 928.
7 Davidovits J. Geopolymers and geopolymeric materials[J]. J Thermal Anal, 1998, 35(2): 429.
8 Weng Luqian, Kwesi Sagoe-Crentsil. Effects of aluminates on the formation of geopolymers[J]. Mater Sci Eng B, 2005, 117(2): 163.
9 Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing[J]. Cem Concr Res, 2005, 35(6): 1224.
10 Majidi B. Geopolymer technology, from fundamentals to advanced applications: A review[J]. Mater Technol, 2009, 24(2): 79.
11 Tanakorn Phoo-ngernkham,Akihiro Maegawa,Naoki Mishima,et al. Effects of sodium hydroxide and sodium silicate solutionson compressive and shear bond strengths of FA-GBFS geopolymer[J]. Constr Build Mater, 2015, 91: 1.
12 Geng Junjun, Zhou Min, Li Yixin, et al. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation[J]. Constr Build Mater, 2017,153: 185.
13 Ye X W, Ma X, He J P, et al. The studies on microstructure of geopolymer[J]. Fly Ash Comprehensive Utilization, 2016(2):44 (in Chinese).
叶雄伟, 马骁, 何巨鹏, 等. 地聚合物微观结构研究进展[J].粉煤灰综合利用, 2016(2):44.
14 Ma T B, Yang X T, Zhang X H, et al. Research progress of geopolymer cementitious materials[J]. Adhesion, 2015(10): 90 (in Chinese).
马腾博, 杨旭彤, 张小会, 等. 地聚合物胶凝材料的研究进展[J]. 粘接, 2015(10): 90.
15 Zhang Z H, Zhu H J, Zhou C H, et al. Geopolymer from kaolin in China: An overview[J]. Appl Clay Sci, 2016, 119: 31.
16 Lian H Z, Zhang Z L, Wang Y H. Rapid evaluation on activity of pozzolanic materials[J]. J Build Mater, 2001,4(3): 299(in Chinese).
廉慧珍, 张志龄, 王英华. 火山灰质材料活性的快速评定方法[J]. 建筑材料学报, 2001,4(3): 299.
17 Zhang Zuhua, John L Provis, Andrew Reid, et al. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence[J]. Cem Concr Res, 2014, 64(10): 30.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[11] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed