Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 159-162    https://doi.org/10.11896/j.issn.1005-023X.2017.022.031
  计算模拟 |
基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*
杨俊茹,王铭兰,刘树,孙绍帅,陈学成
山东科技大学机械电子工程学院,青岛 266590
A First-principles Study on Interface Performance of α-Fe(001)/Mo2FeB2 (001)
YANG Junru, WANG Minglan, LIU Shu, SUN Shaoshuai, CHEN Xuecheng
College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590
下载:  全 文 ( PDF ) ( 504KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用第一性原理方法,研究了α-Fe(001)/Mo2FeB2(001)界面性能。建立了4种不同的原子堆垛方式界面模型,计算了其界面粘附功、界面结合能和断裂功。结果表明,以空心位置堆垛的Fe终端界面性能最稳定,而顶部位置的Fe+B终端界面性能最不稳定,两者的裂纹断裂均趋向于发生在基体相或硬质相内。在此基础上,进一步分析了空心位置Fe终端界面模型和顶部位置Fe+B终端界面模型的电子结构,电荷差分密度图显示在空心位置的Fe终端界面系统中,界面处Fe原子与Fe原子间形成金属键,界面处Fe原子与Mo原子间形成金属键。在顶部位置的Fe+B终端界面系统中,界面处的Fe原子与B原子间形成共价键,但界面强度比空心位置的Fe终端界面系统低。分态密度显示界面处原子间重新排列,发生杂化,形成共价键,揭示了界面成键特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨俊茹
王铭兰
刘树
孙绍帅
陈学成
关键词:  α-Fe(001)/Mo2FeB2(001)界面  第一性原理  粘附功  界面结合能  电子结构    
Abstract: The interface performance of α-Fe(001)/Mo2FeB2 (001) was studied based on the first-principles. Four different interface models of atom stacking were established, and the interface adhesive work, the binding energy and rupture work were calculated. The results show that the interface performance of Fe-terminated was most stable which was stacked by hollow position, the interface performance of Fe+B-terminated on the top was the worst stable. Both of the crack fractures were trended to occur at the substrate phase or the hard phase. Based on this, the electron structure was further analyzed, the charge density difference graph showed that in the interface system of Fe-terminated at the hollow position, the metallic bond was formed between the Fe atom at interface and among the Fe atoms, also the metallic bond was formed between Fe atom and Mo atom. On top of the interface system of Fe+B-terminated, the covalent bond was formed between Fe atom and B atom, the interface strength was lower than the one in the Fe-terminated interface system at hollow position. The partial density of state indicated the atoms at interfaces were rearranged, hybridization occurred, and the covalent bond was formed, which revealed the forming characteristic of the interface bond.
Key words:  α-Fe(001)/Mo2FeB2 (001) interface    first-principles    adhesive work    interface bonding energy    electron structure
发布日期:  2018-05-08
ZTFLH:  TB333  
基金资助: *山东省自然科学基金(ZR2013EEM016;ZR2016EEM37)
作者简介:  杨俊茹:女,1969年生,博士,教授,主要研究方向为覆层材料零件设计E-mail:jryangzhang@163.com
引用本文:    
杨俊茹,王铭兰,刘树,孙绍帅,陈学成. 基于第一性原理的α-Fe(001)/Mo2FeB2(001)界面性能的研究*[J]. 材料导报编辑部, 2017, 31(22): 159-162.
YANG Junru, WANG Minglan, LIU Shu, SUN Shaoshuai, CHEN Xuecheng. A First-principles Study on Interface Performance of α-Fe(001)/Mo2FeB2 (001). Materials Reports, 2017, 31(22): 159-162.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.031  或          https://www.mater-rep.com/CN/Y2017/V31/I22/159
1 Guan W M, Pan Y, Zhang K H, et al. First principle study on the interface of Ag-Ni composites[J].Rare Metal Mater Eng, 2010,39(8):1939.
2 Xiang F H. First-principles study of the interfacial properties of graphene reinforced magnesium matrix composites[D].Taiyuan: North University of China, 2016(in Chinese).
向丰华.石墨烯增强镁基复合材料界面性能第一性原理研究[D].太原:中北大学,2016.
3 Ruan Haiguang, Huang Fuxiang, Zhong Mingjun, et al. The first-principle study of Al-Zr intermetallic compounds[J]. J Chongqing University of Technology(Natural Science), 2017,31(5):60.
阮海光,黄福祥,钟明君,等.Al-Zr系金属间化合物的第一性原理研究[J]. 重庆理工大学学报(自然科学版),2017,31(5):60.
4 Zhang Y, Han X P, Gao X,et al. First-principles calculation on metal-ceramic interfaces[J].Rare Metal Mater Eng, 2005,34(1):640(in Chinese).
张跃,韩小平,高雪,等.金属/陶瓷界面的第一原理研究[J].稀有金属材料与工程,2005,34(1):640.
5 Zhang H Z. First-principles study of the surface and interface of carbide and nitride ceramics[D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2007(in Chinese).
张怀征.碳化物陶瓷表面和金属-氮化物界面的第一原理研究[D].沈阳:中国科学院金属研究所,2007.
6 Arya A, Carter E A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles[J]. J Chem Phys,2003,118(19):8982.
7 Wen Z Q, Hou H, Zhao Y H, et al. First-principle study of interfacial properties of Ni-Ni3Si composite[J]. Comput Mater Sci, 2013,79:424.
8 Li J, Yang Y Q, Feng G H, et al. First-principles study of stability and properties on β-SiC/TiC(111) interface[J]. J Appl Phys, 2013,114(16):163522.
9 Xian Y J, Qiu R Z, Wang X, et al. Interfacial properties and electron structure of Al/B4C interface: A first-principles study[J]. J Nuclear Mater,2016,478:227.
10 Liu B, Wu L J, Zhao Y Q, et al. The interfacial properties of SrRuO3/MoS2 hetero junction: A first-principles study[J]. Eur Phys J B,2016,89:80.
11 Li J, Yang Y, Luo X. First-principles study of the Al(001)/Al3Ti(001) interfacial properties[J]. Comput Mater Sci, 2012,62:136.
12 Wang B, Liu Y, Ye J W, et al. Electronic magnetic and elastic properties of Mo2FeB2: First-principles calculations[J]. Comput Mater Sci, 2013,70:133.
13 Shen Y F. Interfacial binding at TiC based ceramic from first principles investigations[D]. Nanning: Guangxi University, 2012(in Chinese).
申玉芳.TiC基金属陶瓷界面结合的第一性原理研究[D].南宁:广西大学,2012.
14 Fiorentini V, Methfessel M. Extracting convergent surface energies from slab calculations[J]. J Phys: Condensed Matter, 1996,8(36):6525.
15 Wang C, Wang C Y. Ni/Ni3Al interface: A density functional theory study[J]. Appl Surf Sci, 2009,255(6):3669.
16 Siegel D J, Hector L G, Adams J B. Adhesion, atomic structure, and bonding at the Al (111)/α-Al2O3(0001) interface: A first-principles investigation[J]. Phys Rev B, 2002,65(8):085415.
17 Mittendorfer F, Eichler A, Hafner J. Structural, electronic and magnetic properties of nickel surfaces[J]. Surf Sci, 1999,423(1): 1.
[1] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[2] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[3] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[4] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[5] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[6] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[7] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[8] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[9] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[10] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[11] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[12] 余瑞, 张永安, 李亚楠, 李锡武, 李志辉, 闫丽珍, 温凯, 熊柏青. Zn对Al-Mg-Si合金时效析出相稳定性影响的第一性原理研究[J]. 材料导报, 2023, 37(4): 21040034-5.
[13] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[14] 范青青, 安立宝, 常春蕊, 张志明, 贾晓彤. 石墨烯负载Pdn(n=1—3)原子/团簇吸附三氯甲烷分子的第一性原理研究[J]. 材料导报, 2023, 37(21): 22050174-6.
[15] 才文文, 贺勇, 张敏, 史俊杰. AZrX3(A=Ba, Ca;X=S, Se,Te)钙钛矿结构及光电特性的第一性原理研究[J]. 材料导报, 2023, 37(2): 21070076-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed