Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 34-40    https://doi.org/10.11896/j.issn.1005-023X.2017.017.006
  材料综述 |
液相剥离法制备石墨烯的新进展*
祁帅, 黄国强
天津大学化工学院,天津 300072
Progress of Graphene Preparation by Liquid-phase Exfoliation
QI Shuai, HUANG Guoqiang
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072
下载:  全 文 ( PDF ) ( 1596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是一种具有独特结构和优异性能的二维材料,自从2004 年其被成功制备以来,迅速成为材料、化学、物理和工程领域的研究热点。目前,制备石墨烯的方法有很多,包括化学氧化还原法、化学气相沉积法以及液相剥离法等,其中液相剥离法是一种非常重要的制备方法,有望实现高质量石墨烯的工业化生产。主要总结了以超声波作为动力的液相剥离法的相关报道,并对其进行了分类讨论。解释了超声波的作用,着重介绍了以纯溶剂和二元溶剂为剥离溶剂的液相剥离方法,以及助剂辅助剥离的液相剥离方法的研究进展,并综述了各种方法的剥离机理。同时提出了提高石墨剥离效率的方法,指出了选择新溶剂或助剂的原则,旨在为研究更高效生产高质量石墨烯的方法提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
祁帅
黄国强
关键词:  石墨烯  液相剥离法  制备    
Abstract: Graphene is a two-dimensional material with unique structure and excellent properties. Since it was successfully prepared for the first time in 2004, graphene has become a hot point of many fields such as materials, chemistry, physics and engineering. Presently, several preparation methods of graphene have been reported, including chemical oxidation-reduction, chemical vapor deposition(CVD) and liquid-phase exfoliation(LPE), etc. Among them, LPE is an important way to realize industrialization. This review article mainly summarizes the recent researches about the LPE with ultrasonic. The effect of ultrasonic is simply explained and the LPE through pure solvents or binary solvents, and the LPE with additives are summarized. Furthermore, the mechanisms of different ways are discussed. Finally, several methods to improve the exfoliation efficiency are proposed and the way of choosing new solvents or additives is pointed out, aiming at providing references for developing more effective exfoliation systems or new methods to prepare high quality graphene more effectively.
Key words:  graphene    liquid-phase exfoliation    preparation
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TQ127.1  
基金资助: 国家自然科学基金(21676197)
通讯作者:  黄国强:通讯作者,男,1973年生,博士,副教授,主要从事多晶硅精馏领域的研究、开发与工程设计以及石墨烯制备工艺研究 Tel:022-27891125 E-mail:hgq@tju.edu.cn   
作者简介:  祁帅:男,1991年生,硕士研究生,主要从事剥离制备石墨烯工艺的研究 E-mail:qishuai@tju.edu.cn
引用本文:    
祁帅, 黄国强. 液相剥离法制备石墨烯的新进展*[J]. 《材料导报》期刊社, 2017, 31(17): 34-40.
QI Shuai, HUANG Guoqiang. Progress of Graphene Preparation by Liquid-phase Exfoliation. Materials Reports, 2017, 31(17): 34-40.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.006  或          https://www.mater-rep.com/CN/Y2017/V31/I17/34
1 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666.
2 Han Ping, Li Xiaoru, Gu Zheng, et al. Progress of synthesis graphene[J]. J Bohai University: Nat Sci Ed, 2014,35(3):294(in Chinese).
韩萍, 李晓茹, 谷正,等. 石墨烯的制备研究进展[J]. 渤海大学学报:自然科学版,2014,35(3):294.
3 He Dafamg, Wu Jian, Liu Zhanjian, et al. Recent advances in pre-paration of graphene for applications[J]. J Chem Ind Eng (China),2015,66(8):2888(in Chinese).
何大方, 吴健, 刘战剑,等. 面向应用的石墨烯制备研究进展[J]. 化工学报,2015,66(8):2888.
4 Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun,2008,146(9-10):351.
5 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008,8(3):902.
6 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
7 Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523.
8 Stoller M D, Park S, Zhu Y, et al. Graphene-based ultracapacitors[J]. Nano Lett,2008,8(10):3498.
9 Eda G, Chhowalla M. Graphene-based composite thin films for electronics[J]. Nano Lett,2009,9(2):814.
10 Parvez K, Yang S, Feng X, et al. Exfoliation of graphene via wet chemical routes[J]. Synth Metals,2015,210:123.
11 Alaferdov A V, Gholamipour-Shirazi A, Canesqui M A, et al. Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite[J]. Carbon,2014,69(2):525.
12 Hernandez Y, Nicolosi V, Lotya M, et al. High yield production of graphene by liquid phase exfoliation of graphite[J]. Nat Nanotech-nol,2008,3(9):563.
13 Gayathri S, Jayabal P, Kottaisamy M, et al. Synthesis of few layer graphene by direct exfoliation of graphite and a Raman spectroscopic study[J]. AIP Adv,2014,4(2):1296.
14 Sun Z, Huang X, Liu F, et al. Amine-based solvents for exfoliating graphite to graphene outperform the dispersing capacity of N-methyl-pyrrolidone and surfactants[J]. Chem Commun,2014,50(72):10382.
15 Wang X, Fulvio P F, Baker G A, et al. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids[J]. Chem Commun, 2010,46(25):4487.
16 Matsumoto M, Saito Y, Park C, et al. Ultrahigh-throughput exfo-liation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids[J]. Nat Chem,2015, 7(9):730.
17 Raccichini R, Balducci A, Varzi A, et al. Method of producing graphene by exfoliation of graphite: WO,2015131933[P]. 2015-09-11.
18 Hossain M M, Park O K, Hahn J R, et al. High yield and high concentration few-layer graphene sheets using solvent exfoliation of graphite with pre-thermal treatment in a sealed bath[J]. Mater Lett,2014,123(123):90.
19 Liu W, Tanna V A, Yavitt B M, et al. Fast production of high-qua-lity graphene via sequential liquid exfoliation[J]. ACS Appl Mater Interfaces,2015,7(49):27027.
20 Hernandez Y, Lotya M, Rickard D, et al. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery[J]. Langmuir,2010,26(5):3208.
21 Chia J S Y, Tan M T T, et al. A novel one step synthesis of graphene via sonochemical-assisted solvent exfoliation approach for electrochemical sensing application[J]. Chem Eng J,2014,249:270.
22 Dang D K, Kim E J. Solvothermal-assisted liquid-phase exfoliation of graphite in a mixed solvent of toluene and oleylamine[J]. Nanoscale Res Lett,2015,10(1):1.
23 Chen J, Shi W, Fang D, et al. A binary solvent system for improved liquid phase exfoliation of pristine graphene materials[J]. Carbon,2015,94:405.
24 Xu M, Zhang W, Yang Z, et al. One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots[J]. Nanoscale,2015,7(23):10527.
25 Jagiello J, Judek J, Zdrojek M, et al. Production of graphene composite by direct graphite exfoliation with chitosan[J]. Mater Chem Phys,2014,148(3):507.
26 Niazi M B K. Effect of concentration of surfactant on the exfoliation of graphite to graphene in aqueous media[J]. Nanomater Nanotech-nol,2016,6(14):1.
27 Unalan I U, Wan C, Trabattoni S, et al. Polysaccharide-assisted rapid exfoliation of graphite platelets into high quality water-disper-sible graphene sheets[J]. RSC Adv,2015,5(34):26482.
28 Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. J Am Chem Soc,2009, 131(10):3611.
29 Liu W, Zhou R, Zhou D, et al. Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites[J]. Carbon,2015, 83:188.
30 Zhang L, Zhang Z, He C, et al. Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers[J]. ACS Nano,2014,8(7):6663.
31 Ager D, Vasantha V A, Crombez R, et al. Aqueous graphene dispersions-optical properties and stimuli-responsive phase transfer[J]. ACS Nano,2014, 8(11):11191.
32 Tung T T, Yoo J, Alotaibi F K, et al. Graphene oxide-assisted li-quid phase exfoliation of graphite into graphene for highly conductive film and electromechanical sensors[J]. ACS Appl Mater Interfaces,2016,8(25):16521.
33 Naboka O, Yim C H, Abu-Lebdeh Y. Graphene/Na carboxymethyl cellulose composite for Li-ion batteries prepared by enhanced liquid exfoliation[J]. Mater Sci Eng B,2016,213:41.
34 Shinde D B, Brenker J, Easton C D, et al. Shear assisted electrochemical exfoliation of graphite to graphene[J]. Langmuir,2016,32(14):3552.
35 Cui J, Song Z, Xin L, et al. Exfoliation of graphite to few-layer graphene in aqueous media with vinylimidazole-based polymer as high-performance stabilizer[J]. Carbon,2016,99:249.
36 Ciesielski A, Haar S, Gemayel M, et al. Harnessing the liquid-phase exfoliation of graphene using aliphatic compounds: A supramolecular approach[J]. Angew Chem-Int Ed,2014,53(39):10355.
37 Zhang R, Zhang B, Sun S. Preparation of high-quality graphene with a large-size by sonication-free liquid-phase exfoliation of gra-phite with a new mechanism[J]. RSC Adv,2015,5(56):44783.
38 Hui S. A supramolecular strategy to leverage the liquid-phase exfo-liation of graphene in the presence of surfactants: Unraveling the role of the length of fatty acids[J]. Small,2015,11(14):1691.
39 Sebastien H, Matteo B, Jian X, et al. Liquid-phase exfoliation of graphite into single and few layers graphene with α-functionalized alkanes[J]. J Phys Chem Lett,2016,7(14):2714.
40 Usca G T, Hernandez-Ambato J, Pace C, et al. Liquid-phase exfo-liated graphene self-assembled films: Low-frequency noise and thermal-electric characterization[J]. Appl Surf Sci,2016,380:268.
41 Mutyala S, Mathiyarasu J. Preparation of graphene nanoflakes and its application for detection of hydrazine[J]. Sens Actuat B: Chem,2015,210:692.
42 Chen J, Shi W, Chen Y, et al. Eco-friendly exfoliation of graphite into pristine graphene with little defect by a facile physical treatment[J]. Appl Phy Lett,2016,108(7):31051.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[3] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[4] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[5] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[6] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[9] 李雪伍, 王红星, 郭伟玲, 邢志国, 黄艳斐, 王海斗. 红外抗反射微纳结构刻蚀制备研究进展[J]. 材料导报, 2024, 38(6): 22110062-10.
[10] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[11] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[12] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[13] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[14] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[15] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed