Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 27-33    https://doi.org/10.11896/j.issn.1005-023X.2017.017.005
  材料综述 |
氨硼烷水解制氢催化剂载体的研究进展*
桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧
河北工业大学材料科学与工程学院,天津300130
Progress in Catalyst Support for Hydrogen Generation of Ammonia Borane
SANG Wanlu, LI Lanan, GAO Ruoyuan, WANG Chenyang, YANG Xiaojing
Institute of Materials Science and Engineering, Hebei University of Technology,Tianjin 300130
下载:  全 文 ( PDF ) ( 1303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢由于具有高效率和高功率密度而被认为是一种出色的清洁能源。化学储氢材料要求具有高的氢储存量。氨硼烷具有高氢含量(19.6%),且在普通贮存条件下稳定,被认为是有吸引力的储氢材料之一。由于氨硼烷在常温下不易放氢,故放氢催化剂成为氨硼烷放氢研究的核心技术和主要方向。金属催化剂可以显著提高水解放氢速度,是影响氨硼烷水解放氢的关键因素,但是金属颗粒催化剂一般都存在颗粒粒径生长过快、易团聚等缺点。为了解决这一问题,研究者选择不同的载体来分散催化剂,使催化剂金属分散在载体表面,防止团聚和过快增长,从而暴露更多活性位点,使催化氨硼烷放氢速率更快。文章将针对不同催化剂载体对氨硼烷水解的催化效果进行阐述。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桑琬璐
李兰兰
高若源
王晨阳
杨晓婧
关键词:  氨硼烷  制氢  催化剂载体  水解    
Abstract: Hydrogen is considered to be a clean energy source due to its high efficiency, power density and limited environmental impact. Chemical hydrogen storage materials require a high hydrogen storage capacity. Ammonia borane has been identified as an attractive candidate for hydrogen storage due to its high hydrogen content (19.6%) and stability under ordinary storage conditions. Catalyst is the core technology as ammonia borane is not easy to release hydrogen at room temperature without catalysts. Metal catalyst can significantly increase the rate of hydrolysis, which is the key factor affecting the hydrogen evolution of ammonia borane. However, metal catalyst particles are generally easy to become agglomerate and be oxidized. A variety of supporters have been chosen to disperse the catalyst, in order to leave more act positions on the catalysts which allows ammonia borane release hydrogen more quickly. Therefore, the catalytic effects of different catalyst supporters on hydrolysis of ammonia borane are discussed in this paper.
Key words:  ammonia borane    hydrogen generation    catalyst support    hydrolysis
出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB34  
基金资助: 国家自然科学基金(21603052;51301057)
通讯作者:  杨晓婧:通讯作者,女,1983年生,博士,讲师,研究方向为纳米材料 E-mail:yangxiaojing@hebut.edu.cn   
作者简介:  桑琬璐:女,1991年生,硕士研究生,研究方向为纳米材料 E-mail:1499284458@qq.com
引用本文:    
桑琬璐, 李兰兰, 高若源, 王晨阳, 杨晓婧. 氨硼烷水解制氢催化剂载体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 27-33.
SANG Wanlu, LI Lanan, GAO Ruoyuan, WANG Chenyang, YANG Xiaojing. Progress in Catalyst Support for Hydrogen Generation of Ammonia Borane. Materials Reports, 2017, 31(17): 27-33.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.005  或          https://www.mater-rep.com/CN/Y2017/V31/I17/27
1 Liu W, Web C J, Gray E, et al. Review of hydrogen storage in AB alloys targeting stationary fuel cell applications[J]. Int J Hydrogen Energy,2016,41(5):3485.
2 Perathoner S, Centi G, Su D, et al. Turning perspective in pho-toelectrocatalytic cells for solar fuels[J]. ChemSusChem,2016,9(4):345.
3 Tapeinos I G, Koussios S, Groves R M,et al. Design and analysis of a multi-cell subscale tank for liquid hydrogen storage[J]. Int J Hydrogen Energy,2016,41(5):3676.
4 Sakamoto J, Nakayama J, Nakarai T, et al. Effect of gasoline pool fire on liquid hydrogen storage tank in hybrid hydrogen-gasoline fue-ling station[J]. Int J Hydrogen Energy,2016,41(3):2096.
5 Xu W, Li Q, Huang M, et al. Design and analysis of liquid hydrogen storage tank for high-altitude long-endurance remotely-operated aircraft[J]. Int J Hydrogen Energy,2015,40(46):16578.
6 Heather C J, Thomas N H, Andrew S Weller, et al. The catalytic dehydrocoupling of amine-boranes and phosphine-boranes[J]. Topics Organometallic Chem,2015,49:153.
7 Fabien D, Giuseppe C, Marian C, et al. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells[J]. J Power Sources,2015,297:492.
8 Peng S G, Liu J C, Wang F Y, et al. An improved preparation of graphene supported ultrafine ruthenium (0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane[J]. Int J Hydrogen Energy,2015,40(3):10856.
9 Wang H L, Yan J M, Wang Z L, et al. One-step synthesis of Cu@FeNi core-shell nanoparticles: Highly active catalyst for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2012,37(13):10229.
10 Yao Q L, Lu Z H, Wang Y Q, et al. Synergetic catalysis of non-noble bimetallic Cu-Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane[J].J Phys Chem C,2015,119(25):14167.
11 Hyung M J, Weon H S, Jung H P, et al. A metal-organic framework as a chemical guide to control hydrogen desorption pathways of ammonia borane[J]. Nanoscale,2014,6:6526.
12 Shao Y Y, Zhou W, Li X L, et al. Nanostructured carbon for energy storage and conversion[J]. Nano Energy,2012,1(12):195.
13 Wu Z J, Duan Y L, Ge S H, et al. Promoting hydrolysis of ammonia borane over multiwalled carbon nanotube-supported Ru catalysts via hydrogen spillover[J]. Catal Commun,2017,91:10.
14 Chandra M, Xu Q, et al. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources,2006,163(1):364.
15 Sourav B, Lisa R, Ankan P, et al. Mechanistic details of Ru-bispyridylborate complex catalyzed dehydrogenation of ammonia-borane: Role of the pendant boron ligand in catalysis[J]. ACS Catal,2016,6(7):4068.
16 Yang Xiaojing. Research on Pt-M (M = Ni, Co) catalysts for hydrolytic of ammonia borane[D]. Tianjin: Nankai University,2011(in Chinese).
杨晓婧. 氨硼烷水解放氢Pt基催化剂Pt-M (M = Ni, Co)的研究[D]. 天津:南开大学, 2011.
17 Yan J J, Liao J Y, Li H, et al. Magnetic field induced synthesis of amorphous CoB alloy nanowires as a highly active catalyst for hydrogen generation from ammonia borane[J]. Catal Commun,2016,84:124.
18 Bilge C F, Aysel K F. Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency[J]. Int J Hydrogen Energy,2016,41(34):15433.
19 Chandra M, Xu Q. Dissociation and hydrolysis of ammonia-borane with solid acids and carbon dioxide: An efficient hydrogen generation system[J]. J Power Sources,2006,159(2):855.
20 Gao Y, Yue Q Y, Xu S P, et al. Preparation and evaluation of adsorptive properties of micro-mesoporous activated carbon via sodium aluminate activation[J]. Chem Eng J,2015,274:76.
21 Akshay J, Rajasekhar B, et al. Production of high surface area mesoporous activated carbons from waste biomass using hydrogen pe-roxide-mediated hydrothermal treatment for adsorption applications[J]. Chem Eng J,2015,273:622.
22 Wen L, Zheng Z, Luo W, et al. Ruthenium deposited on MCM-41 as efficient catalyst for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. Chin Chem Lett,2015,26(11):1345.
23 Lai S W, Lin H L, Lin Y P, et al. Hydrolysis of ammonia borane catalyzed by an iron nickel alloy on an SBA-15 support[J]. Int J Hydrogen Energy,2013,38(11):4636.
24 Jinho A, Jeffrey R P, Aruna V, et al. Hydrazine-reduction of gra-phite- and graphene oxide[J]. Sci Direct,2011,49:3019.
25 Wang D W, Min Y G, Yu Y H, et al. Laser induced self-propagating reduction and exfoliation of graphite oxide as an electrode material for supercapacitors[J]. Electrochim Acta,2014,141:271.
26 Yang X J, Li L L, Sang W L, et al. Boron nitride supported Ni na-noparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. J Alloys Compd,2017,693:642.
27 Li J, Xiao X, Xu X W, et al. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants[J]. Sci Reports,2013,3:2045.
28 Ovejero G, Sotelo J L, Romero M D, et al. Multiwalled carbon nanotubes for liquid-phase oxidation, functionalization, characterization, and catalytic activity[J]. Ind Eng Chem Res,2006,45:2206.
29 Porro S, Musso S, Vinante M, et al. Purification of carbon nanotubes grown by thermal CVD[J]. Sci Direct,2007,37:58.
30 Yang X J, Cheng F Y, Liang J, et al. Carbon-supported Ni1-x@Ptx(x= 0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2011,36(3):1984.
31 陈军, 都晓玲, 陶占良, 等. 一种用于氨硼烷水解制氢的碳负载Ni3B复合催化剂: 中国, 103816906[P].2014-05-28.
32 Liang H Y, Chen G Z, et al. In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane[J]. Int J Hydrogen Ene-rgy,2012,37(23):17921.
33 Chou C C, Chen B H. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst[J]. J Power Sources,2015,293:343.
34 Yang Y W, Zhang F, Wang H L, et al. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater,2014,19(19):1.
35 卢章辉, 杨宇雯, 陈祥树,等.一种用于氨硼烷水解制氢的Ni-CeO2@graphene复合纳米催化剂及其制备方法: 中国, 103990465[P].2014-08-20.
36 Fan Y R, Li X J, He X C, et al. Effective hydrolysis of ammonia borane catalyzed by ruthenium nanoparticles immobilized on graphic carbon nitride[J]. Int J Hydrogen Energy,2014,39(35):19982.
37 Cao N, Luo W, Luo W, et al. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2013,38(27):11964.
38 Basua S, Brockmana A, Gagare P, et al. Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis[J]. J Power Sources,2009,188(1):238.
39 Yang X J, Cheng F Y, Tao Z L, et al. Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core-Pt shell nanoparticles[J]. J Power Sources,2011,196(5):2785.
40 Yang L, Luo W, Cheng G E, et al. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. Appl Mater Interface,2013,5(16):8231.
41 Du Y S, Cao N, Yang L, et al. One-step synthesis of magnetically recyclable rGO supported Cu@Co core-shell nanoparticles: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane and methylamine borane[J]. New J Chem,2013,37(37):3035.
42 Xiong X, Zhou L Q, Yu G F, et al. Synthesis and catalytic perfor-mance of a novel RuCuNi/CNTs nanocomposite in hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2015,40(45):15521.
43 Hu L, Zheng B, Lai Z P, et al. Room temperature hydrogen generation from hydrolysis of ammonia-borane over an efficient NiAgPd/C catalyst[J]. Int J Hydrogen Energy,2014,39(35):20031.
44 Yang L, Cheng G, Su J, et al. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methy-lamine borane[J]. J Mater Chem A,2013,1(1):10016.
45 Giovanni P R, Umit B D, Philippe M, et al. Facile synthesis by polyol method of a ruthenium catalyst supported on γ-Al2O3 for hydrolytic dehydrogenation of ammonia borane[J]. Catal Today,2011,170(1):85.
46 Yang K Z, Zhou L Q, Yu G F, et al. Ru nanoparticles supported on MIL-53(Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2016,41(15):6300.
47 Wen L, Su J, Wu X J, et al. Ruthenium supported on MIL-96: An efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Int J Hydrogen Energy,2014,39(30):17129.
48 Can H, Metin Ö. A facile synthesis of early monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Appl Catal B: Environmental,2012,125(3):304.
49 Serdar A, Pelin E, Saim Ö. Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: Insight to the nanoparticles formation and hydrogen evolution kinetics[J]. Appl Catal B: Environmental,2013,142-143:187.
50 Kohsuke M, Kohei M, Hiromi Y, et al. Ru and Ru-Ni Nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia-borane[J]. ACS Catal,2016,6(5):3128.
51 Cao N, Liu T, Su J, et al. Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes[J]. New J Chem,2014,38(9):4032.
52 Luo Y C, Liu Y H, Liu X Y, et al. Mesoporous silica supported cobalt catalysts for hydrogen generation in hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2013,38(18):7280.
53 Patel N, Fernandes R, Edla R, et al. Superior hydrogen production rate by catalytic hydrolysis of ammonia borane using Co-B nanoparticles supported over mesoporous silica particles[J]. Catal Commun,2012,23(5):39.
54 Akbayraka S, Tanyildizib S, Morkanb I, et al. Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. Int J Hydrogen Energy,2014,197(2):377.
55 Ayman Y, Robert M B, Mohamed H N, et al. A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex[J]. Int J Hydrogen Energy,2016,41(1):285.
56 Rakapa M, Kalua E E, Özkarb S, et al. Hydrogen generation from hydrolysis of ammonia-borane using Pd-PVB-TiO2 and Co-Ni-P/Pd-TiO2 under stirred conditions[J]. J Power Sources,2012,210(4):184.
57 Nirmala R, Navamathavan R, Mohamed E N, et al. Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrogen Energy,2012,37(13):10036.
58 Özhava D, Özkar S. Rhodium(0) nanoparticles supported on nanosilica: Highly active andlong lived catalyst in hydrogen generation from the methanolysis of ammonia borane[J]. Appl Catal B: Environmental,2016,181:716.
59 Metin , Mazumder V, Özkar S, et al. Monodisperse nickel nano-particles and their catalysis in hydrolytic dehydrogenation of ammonia borane[J]. J Am Chem Soc,2010,132:1468.
60 卢章辉, 姚淇露, 陈祥树, 等. 一种用于氨硼烷和阱硼烷水解制氢的Cu@mSiO2核壳纳米催化剂及其制备方法:中国, 103949254[P].2014-07-30.
61 Durak H, Gulcan M, et al. Hydroxyapatite-nanosphere supported ruthenium(0) nanoparticle catalyst for hydrogen generation from ammonia-borane solution: Kinetic studies for nanoparticle formation and hydrogen evolution[J]. RSC Adv,2014,16(4):1.
62 Akbayrak S, Özkar S. Ruthenium(0) nanoparticles supported on xonotlite nanowire: A long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane[J]. Dalton Trans,2013,43(4):1797.
[1] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[2] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[3] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[4] 赵冬梅, 赵有璟, 王敏. 双极膜水解离性能改进研究进展[J]. 材料导报, 2024, 38(10): 23050035-9.
[5] 朱昌盛, 赵顺征, 唐晓龙, 高凤雨, 于庆君, 刘俊, 周远松, 温燕凤, 易红宏. 铝基催化剂催化水解羰基硫研究进展[J]. 材料导报, 2023, 37(20): 22040149-8.
[6] 韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
[7] 汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
[8] 林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
[9] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[10] 杨振清, 项文丽, 矫玉秋, 王郭晨, 于月宁, 徐慧英, 邵长金. 均相光催化制氢体系有机染料光敏剂的研究进展[J]. 材料导报, 2022, 36(24): 20100177-15.
[11] 李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 36(22): 20100246-9.
[12] 王明飞, 陈鹏, 陶雷, 薛宇, 刘敬业, 王学谦, 马懿星, 王郎郎, 李佳奇. 有机硫水解催化剂研究进展[J]. 材料导报, 2022, 36(17): 20080196-9.
[13] 甘建昌, 胡海平, 苏明, 陈锋, 王辉虎. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 20100188-10.
[14] 王小炼, 杨茂, 刘永辉, 张渝彬, 冯威. 非贵金属催化剂催化硼氢化钠水解制氢的研究进展[J]. 材料导报, 2021, 35(Z1): 21-28.
[15] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed