Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 12-16    https://doi.org/10.11896/j.issn.1005-023X.2017.013.002
  材料综述 |
金属材料动态再结晶模型研究现状*
孙宇1, 周琛1, 万志鹏1, 任丽丽2, 胡连喜1
1 哈尔滨工业大学金属精密热加工国家级重点实验室,哈尔滨 150001;
2 中国核工业二三建设有限公司, 北京 101300
Current Research Status of Dynamic Recrystallization Model of Metallic Materials
SUN Yu1, ZHOU Chen1, WAN Zhipeng1, REN Lili2, HU Lianxi1
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001;
2 China Nuclear Industry 23 Construction Co., Ltd, Beijing 101300
下载:  全 文 ( PDF ) ( 1291KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 动态再结晶是热塑性变形过程中重要的材料软化、晶粒细化、组织控制和塑性成形能力改善方法,而材料发生动态再结晶过程形成的组织结构直接决定其综合性能,因此,长期以来动态再结晶一直是热成形过程中的研究热点。概述了动态再结晶的物理机理,介绍了位错密度模型、动力学模型和微观组织演化数值模拟,并对目前研究现状进行分析,展望其未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宇
周琛
万志鹏
任丽丽
胡连喜
关键词:  动态再结晶  位错密度模型  动力学模型  元胞自动机    
Abstract: Dynamic recrystallization is an effective approach to refine grains, control texture and improve plastic deformation capacity. The mechanical properties of metal materials are directly determined by the microstructure formed by dynamic recrystallization. Therefore, an increasing number of literature concerning dynamic recrystallization have been addressed throughout the world. In the present work, the physical basis for dynamic recrystallization is reviewed. The dislocation density model, kinetic model and flow behaviors, including typical material responses to plastic deformation and the influencial factors are systematically discussed in detail. Finally, the research status of dynamic recrystallization is deeply analyzed and the developing prospect is summarized.
Key words:  dynamic recrystallization    dislocation density model    kinetic model    cellular automaton
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG146.21  
基金资助: *国家自然科学基金(51405110);中国博士后科学基金(2014M551234);高等学校博士学科点专项科研基金(20132302120002)
通讯作者:  胡连喜:通讯作者,男,1961年生,教授,博士研究生导师,主要从事轻质耐热结构材料制备与成形 E-mail:hulx@hit.edu.cn   
作者简介:  孙宇:男,1983年生,博士,副教授,主要从事金属材料热成形过程微观组织模拟 E-mail:yusun@hit.edu.cn
引用本文:    
孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
SUN Yu, ZHOU Chen, WAN Zhipeng, REN Lili, HU Lianxi. Current Research Status of Dynamic Recrystallization Model of Metallic Materials. Materials Reports, 2017, 31(13): 12-16.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.002  或          https://www.mater-rep.com/CN/Y2017/V31/I13/12
1 Li Y P, Song R B, Wen E D, et al. Hot deformation and dynamic recrystallization behavior of austenite-based low-density Fe-Mn-Al-C steel [J]. Acta Mater,2016,29(5):441.
2 Liu Chuming, Liu Zijuan, Zhu Xiurong, et al. Research and deve-lopment progress of dynamic recrystallization in pure magnesium and its alloys [J]. Chin J Nonferrous Met,2016,16(1):1(in Chinese).
刘楚明, 刘子娟, 朱秀荣, 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报,2016,16(1):1
3 Sakai T, Jonas J J. Overview No. 35, dynamic recrystallization: Mechanical and microstructural considerations [J]. Acta Metall,1984,32:189.
4 Sakai T, Akben M G, Jonas J J. Dynamic recrystallization during the transient deformation of a vanadium microalloyed steel [J]. Acta Metall,1983,31:631.
5 Luo Jiao, Li Miaoquan, Li Hong. Microstructural simulation during plastic deformation [J]. Mater Rev,2008,22(3):102(in Chinese).
罗皎, 李淼泉, 李宏. 塑性变形时的微观组织模拟[J]. 材料导报,2008,22(3):102.
6 Galindo E I, Rivera P E J. Grain size evolution during discontinuous dynamic recrystallization [J]. Scr Mater,2014,72:1.
7 Huang K, Loge R E. A review of dynamic recrystallization pheno-mena in metallic materials [J]. Mater Des,2016,111:548.
8 Lukasz M, Mateusz S, Maciej P. Perceptive comparison mean full field dynamic recrystallization models [J]. Archives Civil Mech Eng,2016,16(4):569.
9 Zhanna Y, Andrey B, Rustam K. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773—1273 K [J]. Acta Mater,2015,82(1):244.
10 Chen F, Feng G W, Cui Z S. Mathematical modeling of critical condition for dynamic recrystallization [J]. Procedia Eng,2014,81:486.
11 Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Metall,1969,17(8):1033.
12 Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. Iron Steel Institute Japan Int,2003,43(5):684.
13 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater,1996,44(1):127.
14 Sousa A C M, Selih J, Gerber A G, et al. Heat and fluid flow simulation of the melt-drag single-roll strip casting process [J]. J Mater Process Technol,1992,34(1):473.
15 Mirzadeh H, et al. Prediction of the critical conditions for initiation of dynamic recrystallization [J]. Mater Des,2010,31(3):1174.
16 Liu X G, Zhang L G, Qi R S, et al. Prediction of critical conditions for dynamic recrystallization in 316LN austenitic steel [J]. J Iron Steel Res,2016,23(3):238.
17 Fang B, Ji Z, Liu M, et al. Critical strain and models of dynamic recrystallization for FGH96 superalloy during two-pass hot deformation [J]. Mater Sci Eng A,2014,593:8.
18 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater Sci Eng A,2016,663:141.
19 Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth [J]. Trans Am Institute Mining,1939,135:416.
20 Avrami M. Kinetics of phase change. Ⅱ: Transformation-time relations for random distributuin of nuclei [J]. J Chem Phys,1940,8:212.
21 Sellars C M. Modelling microstructural development during hot rol-ling [J]. Mater Sci Technol,1990,6(11):1072.
22 Yada H. Prediction of microstructural changes and mechanical pro-perties in hot strip rolling [J]. Accelerated Cool Rolled Steel,1987,3:105.
23 Kim S I, Lee Y, Lee D L, et al. Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation [J]. Mater Sci Eng A,2003,355:384.
24 Liu J,et al. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater Sci Eng A,2011,529:300.
25 Serajzadeh S, Taheri A K. Prediction of flow stress at hot working condition [J]. Mech Res Commun,2003,30:87.
26 Wan Z P, Sun Y, Hu L X, et al. Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy [J]. Mater Des,2017,122(15):11.
27 Gao Zhigang, Guo Hongzhen, Miao Xiaopu, et al. Work-hardening behavior of TC18 titanium alloy during hot processing associating K-M and E-M criterion [J]. Trans Mater Heat Treatment,2015,36(S2):223(in Chinese).
高志刚, 郭鸿镇, 苗小浦, 等. 协同K-M和E-M准则的TC18钛合金高温变形加工硬化行为[J]. 材料热处理学报,2015,36(S2):223.
28 Sakai T. Dynamic recrystallization microstructures under hot wor-king conditions [J]. J Mater Process Technol,1995,1:349.
29 Bergstro Y. A dislocation model for stress-train behavior of polycrystalline alpha-Fe with special emphasis on variation of densities of mobile and dislocations [J]. Mater Sci Eng A,1970,5(4):193.
30 Mecking H, Kocks U F. Kinetics of flow and strain-hardening [J]. Acta Metall,1981,29(11):1865.
31 Estrin Y, Mecking H. A unified phenomenological description of work-hardening and creep based on one-parameter models [J]. Acta Metall,1984,32(1):57.
32 Laasraoui A, Jonas J J. Recrystastallization of austenite after deformation at high temperature and strain rates-analysis and modelling [J]. Metall Trans A,1991,22(7):151.
33 Han Yawei, Su Juanhua, Ren Fengzhang, et al. Simulation of microstructure evolution of hot-deformed commercial pure titanium by Laasraoui-Jonas dislocation density model [J]. Trans Mater Heat Treatment,2014,35(11):210(in Chinese).
韩亚玮, 苏娟华, 任凤章, 等. 应用Laasraoui-Jonas 位错密度模型模拟工业纯钛微观组织演变[J]. 材料热处理学报,2014,35(11):210.
34 Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater,2003,51:2685.
35 Liu Xiao, Zhu Biwu, Li Luoxing. Dynamic recrystallization of AZ31 Magnesium alloy simulated by Laasraoui-Jonas dislocation equation coupled cellular automata method [J]. Chin J Nonferrous Met,2013,23(4):898(in Chinese).
刘筱, 朱必武, 李落星. Laasraoui-Jonas位错密度模型结合元胞自动机模拟AZ31镁合金动态再结晶[J]. 中国有色金属学报,2013,23(4):898.
36 Julien D J, Denis S, Olivier F, et al. 3D numerical modeling of dynamic recrystallization under hot working: Application to Inconel 718 [J]. Mater Sci Eng A,2015,646:33.
37 Ding R, Guo Z X. Microstructural modeling of dynamic recrystallization using an extended cellular automaton approach [J]. Comput Mater Sci,2002,23:209.
38 Roberts W, Ahlblom B. Nucleation criterion for dynamic recrystallization during hot working [J]. Acta Metall,1978,26(5):801.
39 Liu Y X, Lin Y C, Li H B, et al. Study of dynamic recrystallization in a Ni-based superalloy by experiments and cellular automaton mo-del [J]. Mater Sci Eng A,2015,626,432.
40 Zhao P Y, Thaddeus S E L, Wang Y Z, et al. An integrated full-field model of concurrent plastic deformation and microstructure evolution: Application to 3D simulation of dynamic recrystallization in polycrystalline copper [J]. Int J Plast,2016,80:38.
[1] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[2] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[3] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[4] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[5] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[6] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[7] 张喜庆, 滕莹雪, 郭菁. 元胞自动机在金属材料腐蚀研究中的应用[J]. 材料导报, 2023, 37(8): 21050078-11.
[8] 杜金亮, 杨丽娜, 冯运莉, 李杰, 刘国龙, 吝冉. 温轧40CrMo中厚钢板在退火过程中铁素体与碳化物的协同演变规律[J]. 材料导报, 2023, 37(8): 21070164-3.
[9] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[10] 王庆娟, 党雪, 杜忠泽, 王钦仁, 何泽恩, 齐泽江. B92SiQL钢的高温流变行为及变形机制研究[J]. 材料导报, 2023, 37(21): 22040403-8.
[11] 刘嘉琴, 王晓方, 刘柯钊. 铁氮化工艺、氮化铁的性质及氧化行为的研究现状与展望[J]. 材料导报, 2023, 37(14): 21100038-16.
[12] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[13] 张琪, 冯攀, 王浩川, 邵丽静, 叶少雄, 冉千平. 混凝土中微波型主动控释胶囊的制备及释放行为[J]. 材料导报, 2022, 36(4): 20100262-7.
[14] 张鸿飞, 丁雨田, 雷健, 沈悦, 陈建军, 高钰璧. 中低温挤压Mg-1.5Zn-0.2Ca合金组织与性能研究[J]. 材料导报, 2022, 36(3): 20120264-5.
[15] 孙建, 黄贞益, 李景辉, 王萍, 吴旭明. 基于加工硬化率的新型轻质钢动态再结晶临界条件及变形机制研究[J]. 材料导报, 2022, 36(19): 21050251-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed