Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 136-142    https://doi.org/10.11896/j.issn.1005-023X.2017.01.019
  环境修复材料 |
用于CO低温氧化负载型纳米金催化剂研究进展
张静静1,孙 杰1,李吉刚1,周 添1,陈立泉2
1 防化学院新能源及能源安全教研室,北京 102205;
2 中国科学院物理研究所,北京100080
Research Progress of Supported Nanosized Gold Catalysts for Low-temperature CO Oxidation
ZHANG Jingjing1, SUN Jie1, LI Jigang1, ZHOU Tian1, CHEN Liquan2
1 Lab of Renewable Energy and Energy Safety, Institute of Chemical Defense, Beijing 102205;
2 Institute of Physics, Chinese Academy of Science, Beijing 100080
下载:  全 文 ( PDF ) ( 1397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 一氧化碳(CO)催化氧化反应因在工业、环保、军事、人类生活等方面应用广泛而受到人们普遍关注,如激光器中微量CO的消除、封闭体系中CO的消除、汽车尾气净化以及质子交换膜燃料电池中少量CO的消除等。近年来关于纳米金催化剂用于CO低温氧化反应的研究已成为备受关注的热点。阐述了金颗粒尺寸、载体种类、制备方法、制备条件等对催化剂活性的影响,总结了催化机理的研究现状和导致催化剂失活的因素,最后对其未来的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张静静
孙 杰
李吉刚
周 添
陈立泉
关键词:  一氧化碳  纳米金催化剂  载体  催化机理  失活    
Abstract: The catalytic oxidation of carbon monoxide (CO) at low temperature has attracted considerable attention because of its wide application in industry, environmental protection, military, and many aspects of human life, such as the exhaust abatement for CO2 lasers, trace CO removal in enclosed atmospheres, automotive emission control, and CO preferential oxidation (PROX) for proton exchange membrane fuel cells (PEMFC). In recent years the nanosized gold catalysts for low-temperature CO oxidation become the study hotspot. The effects of gold particles size, support kinds, preparation method and preparation condition on the catalysts activity is mainly introduced. The research status of the catalytic mechanism and causes for catalyst deactivation are reviewed, and finally brief prospect over the future research directions of this field.
Key words:  carbon monoxide    nanosized gold catalyst    supports    catalytic mechnism    deactivation
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TQ426.8  
  O643.36  
作者简介:  张静静:女,1988年生,博士研究生,主要从事低温下催化处理小分子毒剂研究 E-mial:jingswing99@163.com 孙杰:通讯作者,女,教授,主要从事新能源材料的研究 E-mail: magnsun@mail.tsinghua.edu.cn
引用本文:    
张静静, 孙 杰, 李吉刚, 周 添, 陈立泉. 用于CO低温氧化负载型纳米金催化剂研究进展[J]. 材料导报, 2017, 31(1): 136-142.
ZHANG Jingjing, SUN Jie, LI Jigang, ZHOU Tian, CHEN Liquan. Research Progress of Supported Nanosized Gold Catalysts for Low-temperature CO Oxidation. Materials Reports, 2017, 31(1): 136-142.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.019  或          https://www.mater-rep.com/CN/Y2017/V31/I1/136
1 Fierro-Gonzalez J C, Gates B C. Catalysis by gold dispersed on supports: The importance of cationic gold[J]. Chem Soc Rev,2008,37:2127.
2 Hutchings G J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts[J]. J Catal,1985,96(1):292.
3 Haruta M, Kobayashi T, Sano H, et al. Novel gold catalysis for the oxidation of carbon-monoxide at a temperature ture far below 0 ℃[J]. Chem Lett,1987,2:405.
4 Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide[J].J Catal,1989,115(2):301.
5 Haruta M, Tsubota S, Kobayashi T, et al. Low-temperature oxidation of CO over gold supported on TiO2,alpha-Fe2O3,and Co3O4[J].J Catal,1993,144:175.
6 Zhang F L. Investigation on Au/Fe2O3-MOx catalysts applied in gas purification[J]. Low Temperat Specially Gas, 2013,31(4):41(in Chinese).
张凤利.Au/Fe2O3-MOx催化剂在气体纯化中的应用研究[J].低温与特气,2013,31(4):41.
7 Twigg M V. Progress and future challenges in controlling automotive exhaust gas emissions[J].Appl Catal B-Environ,2007,70(1-4):2.
8 Liu J F, Chen W, Liu X W, et al. Au/LaVO4 nanocomposite: Pre-paration, characterization, and catalytic activity for CO oxidation[J]. Nano Res,2008,1:46.
9 Souza M M V M, Ribeiro N F P, Schmal M. Influence of the support in selective CO oxidation on Pt catalysts for fuel cell application[J]. Int J Hydrogen Energ,2007,32(3):425.
10 Wang D H, Dong T X, Shi X C, et al. Deactivation mechanism of nanosized gold catalysts stored in ambient air[J]. Chinese J Catal,2007,28(7):657(in Chinese).
王东辉,董同欣,史喜成,等.纳米金催化剂的抗水性能和抗硫中毒性能[J].催化学报,2007,28(7):657.
11 Laoufi I,Saint-Lager M C,Lazzari R,et al.Size and catalytic activity of supported gold nanoparticles:An in operando study during CO oxi-dation[J]. J Phys Chem,2011,115:4673.
12 Tana, Wang F G, Li H J, et al. Influence of Au paricle size on Au/CeO2 catalysts for CO oxidation[J]. Catal Today,2011,175:541.
13 Sun C W, Li H, Chen L Q. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction[J]. J Phys Chem Solids,2007,68:1785.
14 Liu X Y, Wang A Q, Zhang T, et al. Au-Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: Effects of Au/Cu rations[J].Catal Today,2011,160:103.
15 Chen B B, Zhu X B, Crocker M, et al. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature[J]. Appl Catal B,2014,154-155:73.
16 Ghosh P, Camellone M F, Fabris S. Fluxionality of Au clusters at ceria surfaces during CO oxidation:Relationships among reactivity, size, cohesion, and surface defects from DFT simulations[J]. J Phys Chem Lett,2013,4:2256.
17 Ho K Y, Yeung K L. Properites of TiO2 support and the perfor-mance of Au/TiO2 catalyst for CO oxidation reaction[J].Gold Bull,2007,40(1):15.
18 Aguyet T T M, Chi T Q, Yen Q T H, et al. Preparation, characterization and catalytic activity of gold nanoparticles supported on Co3O4[J]. Int J Nanotechnol,2013,10(3-4):334.
19 Zhao K F, Tang H, Qiao B T, et al. Highly activity of Au/γ-Fe2O3 for CO oxidation: Effect of support crystal phase in catalyst design[J]. ACS Catal,2015,5:3528.
20 Tabakova T, Dimitrov D, Manzoli M, et al. Impact of metal doping on the activity of Au/CeO2 catalysts for catalytic abatement of VOCs and CO in waste gases[J].Catal Commun,2013,35:51.
21 Yang K, Huang K, He Z J, et al. Promoted effect of PANI as electron transfer promoter on CO oxidation over Au/TiO2[J]. Appl Catal B,2014,158-159:250.
22 Liao X M, Chu W, Dai X Y, et al. Promoting effect of Fe in prefe-rential oxidation of carbon monoxide reaction(PROX) on Au/CeO2[J]. Appl Catal A,2012,449:131.
23 Tabkova T, Avgouropoulos G, Papavasiliou J, et al. CO-free hydrogen production over Au/CeO2-Fe2O3 catalysts:Part 1.Impact of the support compostion on the performance for the preferential CO oxidation reaction[J]. Appl Catal B,2011,101:256.
24 Luengnaruemitchai A, Srihamat K, Pojanavaraphan C, et al. Activity of Au/Fe2O3-TiO2 catalyst for preferential CO oxidation[J]. Int J Hydrogen Energ,2015,40:13443.
25 Li S N, Zhu H Q, Qin Z F, et al. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B,2014,144:498.
26 Wang L, Guo G S, Gu F B, et al. Preparation of three different sphere-like Au/CeO2 catalysts and their activity for the CO oxidation[J]. Adv Mater Res,2010,160-162:428.
27 Zhao J B, Fu T, Li L, et al. Synthesis, characterizations and catalytic performance of nanostructure Au/Fe2O3[J]. Chinese J Inorg Chem,2014,30(7):1489.
28 Wu H J, Pantaleo G, Venezia A M, et al. Mesoporous silica based gold catalysts:Novel synthesis and application in catalytic oxidaion of CO and volatile organic compounds(VOCs)[J]. Catal,2013,3:774.
29 Yin H F, Ma Z, Zhu H G, et al. Evidence for and mitigation of the encapsulation of gold nanoparticles within silica supports upon high-temperature treatment of Au/SiO2 catalysts:Implication to catalyst deactivation[J].Appl Cataly A,2010,386:147.
30 Zou X H, Li F, Qi S X, et al. A facile synthetic route for the preparation of the Au/MOx/Al2O3 catalysts towards CO oxidation[J]. React Kinet Catal Lett,2006,88(1):97.
31 Wang C Y, Boucher M, Yang M, et al. ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction[J]. Appl Catal B,2014,154-155:142.
32 Hao Y, Mihaylov M, Icanova E,et al. CO oxidation catalyzed by gold supported on MgO:Spectroscopic identification of carbonate-like species bonded to gold during catalyst deactivation[J]. J Catal,2009,261:137.
33 Liu X Y, Wang A Q, Zhang T,et al. Catalysis by gold:New insights into the support effect[J].Nano Today,2013,8:403.
34 Ren L H, Zhang H L, Lu A H, et al. Porous silica as supports for controlled fabrication of Au/CeO2/SiO2 catalysts for CO oxidation: Influence of the silica nanostructures[J]. Micropor Mesopor Mat,2012,158:7.
35 Wang Z W, Wang X V, Zeng D Y, et al. Enhance catalytic activity for CO oxidation over titania supported gold catalysts that dispersed on SiO2[J]. Catal Today,2011,160:144.
36 Qi L, Tang C J, Zhang L, et al.Influrence of cerium modification methods on catalytic performance of Au/mordenite catalysts in CO oxidation[J]. Appl Catal B,2012,127:234.
37 Tabakova T, Ilieva L, Ivanov I,et al.Influence of the preparation method and dopants nature on the WGS activity of gold catalysts supported on doped by transition metals ceria[J]. Appl Catal B,2013:136-137:70.
38 Liu W, Feng L J, Zhang C, et al. A facile hydrothermal synthesis of 3D flowerlike CeO2 via a cerium oxalate precursor[J].J Mater Chem A,2013,1:6942.
39 Horvath A, Beck A, Stefler G, et al. Silica-supported Au nanoparticles decorated by CeO2:Formation, morphology, and CO oxidation activity[J]. J Phys Chem C,2011,115:20388.
40 高莹,张荣斌.氧化铈制备方法对Au/CeO2催化剂催化氧化CO反应活性的影响[C]//第十八届全国稀土催化学术会议论文集,2011.
41 Soria M A, Perez P, Carabineiro S A C, et al. Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water-gas shift reaction[J].Appl Catal A,2014,470:45.
42 Zhang R B, Yao L J, Zhang N, et al. Acidified bentonite supported gold catalyst for CO oxidation[J].Chinses J Appl Chem,2012,29(8):926(in Chinese).
张荣斌,姚刘晶,张宁,等. 酸化膨润土负载金催化剂用于CO氧化[J].应用化学,2012,29(8):926.
43 Xian C N, Li H, Chen L Q,et al. Morphological and catalytic stabi-lity of mesoporous peony-like ceria[J]. Micropor Mesopor Mat,2010,142(1):202.
44 Del R E, Lopez-Haro M L, Cies J M, et al. Dramtic effect of redox pre-treatments on the CO oxidation activity of Au/Ce0.5Tb0.12Zr0.38-O2-x catalysts prepared by deposition-precipitation with urea:A nano-nanalytical and nano-strucural study[J]. Chem Commun,2013,49:6722.
45 Collins S E, Cies J M, Rio E D, et al. Hydrogen interaction with a ceria-zirconia supported gold catalyst. Influence of CO co-adsorption and pretreatment condition[J]. J Phys Chem C,2007,111:14371.
46 Li Z X, Shi F B, Li L L, et al. A facile route to orded mesoporous-alumina-supported catalysts,and their catalytic activities for CO oxidation[J]. Phys Chem Chem Phys,2011,33:2488.
47 Sayari S A, Carley A F, Taylor S H, et al. Au/ZnO and Au/Fe2O3 catalysts for CO oxidation at ambient temperature:Comments on the effect of synthesis conditions on the preparation of high activity catalysts prepared by copercipitation[J].Top Catal,2007,44(1-2):123.
48 Sakwarathorn T, Luengnaruemitchai A, Pongstabodee S. Preferential CO oxidation in H2-rich steam over Au/CeO2 catalysts prepared via modified deposition-precipitaion[J]. J Ind Eng Chem,2011,17:747.
49 Huang J, Xue C J, Wang B F, et al. Gold-supported tin dioxide nanocatalysts for low temperature CO oxidation:Prepareation, cha-racterization and DRIFTS study[J].React Kinet Mech Cat,2013,108:403.
50 Moreau F, Bond G C, Taylor A O. Gold on titania catalysts for the oxidation of carbon monoxide: Control of pH during preparation with various gold contents[J]. J Catal,2005,231:105.
51 Zhang R R, Ren L H, Lu A H, et al. Influence of pretreatment atmospheres on the activity of Au/CeO2 catalyst for low-temperature CO oxidation[J]. Catal Commun,2011,13:18.
52 Holgado J P, Ternero F, Cruz V M G, et al. Promotional effect of the base metal on bimetallic Au-Ni/CeO2 catalyst prepared from core-shell nanoparticles[J].ACS Catal,2013,3:2169.
53 Yu K, Wu Z C, Zhao Q R, et al. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation[J]. Phys Chem Lett,2008,112:2244.
54 Qi J, Chen J, Li G D, et al. Facile synthesis of core-shell Au@CeO2 nanocomposites with remarkalby enhanced catalytic activity for CO oxidation[J]. Energ Environ Sci,2012,5:8973.
55 Ma Z, Dai S. Design of novel structured gold nanocatalysts[J]. ACS Catal,2011,1:805.
56 Qu Z P, Ke G Z, Wang Y, et al. Investigation of factors influencing the catalytic performance of CO oxidation over Au-Ag/SBA-15 catalyst[J]. Appl Surf Sci,2013,277:293.
57 Tan W, Deng J G, Xie S H, et al. Ce0.6Zr0.3Y0.1O2 nanorod supported gold and palladium alloy nanoparticles: High-performance catalysts for toluene oxidation[J]. Nanoscale,2015,7:8510.
58 Li L, Chai S H, Binder A, et al. Synthesis of MCF-supported AuCo nanoparticle catalysts and the catalytic performance for the CO oxidation reaction[J]. RSC Adv,2015,5:100212.
59 Zhang L, Kim H Y, Henkelman G. CO oxiation at the Au-Cu interface of bimetallic nanoclusters supported on CeO2(111)[J]. Phys Chem Lett,2013,4:2943.
60 Liao X M, Caps V, Chu W, et al. Highly stable bimetallic Au-Cu supported on Al2O3 for selective CO oxidation in H2-rich gas: Effect of Cu/Au atomic ratio and sensitive influence of particle size[J].RSC Adv,2016,6:4899.
61 Wang L C, Jin H J, Widmann D, et al. Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor[J].J Catal,2011,278:219.
62 Kameoka S, An P T. CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an orderd AuCu3 intermetallic compound[J]. Catal Lett,2008,121(3):337.
63 Xu C X, Su J X, Xu X H, et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc,2007,129:42.
64 Yan T, Redman D W, Yu W Y, et al. CO oxidation on inverse Fe2O3/Au(111) model catalysts[J]. J Catal,2012,294:216.
65 Mandal S, Santra C, Bando K K, et al. Aerobic oxidation of benzyl alcohol over mesoporous Mn-doped ceria supported Au nanoparticle catalyst[J]. J Mol Catal A,2013,378:47.
66 Li L, Wang A Q, Qiao B T, et al. Origin of the high activity of Au/FeOx for low-temperature CO oxidtion:Direact evidence for a redox mechanism[J]. J Catal,2013,299:90.
67 Si R R, Liu J F, Yang K, et al. Temperature-programed surface reaction study of CO oxidation over Au/TiO2 at low temperature: An insight into nature of the reaction process[J]. J Catal,2014,311:71.
68 Green I X, Tang W, Neurock M, et al. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst[J]. Science,2011,333:736.
69 Remediakis I N, Lopez N, et al. CO oxidation on rutile-supported Au nanoparticles[J]. Angew Chem Int Ed, 2005,44(12):1824.
70 Gong J, et al. Cheminform abstract: Surface science investigation of oxidative chemistry on gold[J]. Chem Inform,2009,41(3):1063.
71 Widmann D, Behm R J. Active oxygen on a Au/TiO2 catalyst:Formation, stability, and CO oxidation activity[J]. Angew Chem Int Ed,2011,50:10241.
72 Guzman J, et al. Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2[J]. J Am Chem Soc,2005,127(10):3286.
73 Li M J, Wu Z L, Overbury S H. CO oxidation on phosphate-supported Au catalysts:Effect of support reducibility on surface reaction[J]. J Catal,2011,278:133.
74 Widmann D,Behm R J. Activation of molecular oxygen and the nature of the active oxygen species for CO oxidation on oxide supported Au catalysts[J]. Accounts Chem Res,2014,47(3):740.
75 Min B K, Friend C M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation[J]. Chem Rev,2007,10:2709.
76 Choudhary T V, Goodman D W. Oxidation catalysis by supported gold nano-clusters[J].Top Catal,2002,21(1):25.
77 Jia M L,Li X, Zhao R G T, et al.Activity and deactivation behavior of Au/LaMnO3 catalysts for CO oxidation[J]. J Rare Earth,2011,29(3):213.
78 Cardenas L F, Wang X D, Lamey D. An examination of catalyst deactivaton in p-chloronitrobenzene hydrogenation over supported gold[J].Chem Eng J,2014,255:695.
79 Solkina Y S, Reshetnikov S I, Estrada M, et al. Evaluation of gold on alumina catalyst deactivation dynamics during α-pinene isomerization[J]. Chem Eng J,2011,176-177:42.
80 Hernandez J A, Gomez S A, Zepeda T A, et al. Insight into the deactivation of Au/CeO2 catalysts studied by in situ spectroscopy during the CO-PROX reaction[J]. ACS Catal,2015,5:4003.
81 Rio E D, Collins S E, Aguirre A, et al. Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: A systematic study of CO2-triggered carbon inhibition[J]. J Catal,2014,316:210.
82 Sudarsanam P, Mallesham B, Reddy P S. Nano-Au/CeO2 catalysts for CO oxidation:Influence of dopants (Fe,La and Zr) on the physicochemical properties and catalytic activity[J]. Appl Catal B,2014,144:900.
83 Abian M, Gimenez L J, Bilbao R, et al. Effect of different concentration levels of CO2 and H2O on the oxidation of CO: Experiments and moldeling[J]. P Combus Inst,2011,33:317.
84 Zhang S, Li X S, Chen B B, et al. CO oxidation activity at room temperature over Au/CeO2 catalysts: Disclosure of induction period and humidity effect[J]. ACS Catal,2014,4:3481.
[1] 张佳倩, 王坤俊, 杨超, 杨颂, 上官炬, 王冰凝, 刘守军. 浸渍活性炭吸附放射性碘甲烷后失活机理研究[J]. 材料导报, 2024, 38(7): 22090123-5.
[2] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[3] 鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏. 生物炭提升土壤中解磷菌定殖及其解磷能力[J]. 材料导报, 2024, 38(21): 23050070-9.
[4] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[5] 刘晨爽, 田野, 盛显良, 斯琴塔娜, 张玉辉. 天然高分子多糖在药物传递领域中的应用[J]. 材料导报, 2024, 38(19): 23050200-18.
[6] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[7] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[8] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[9] 林博文, 徐亦冬, 余德密. MgAl-LDHs/TiO2复合光催化剂的制备及光催化性能[J]. 材料导报, 2023, 37(19): 22050098-6.
[10] 黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
[11] 韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
[12] 李洁. 多孔富缺陷半导体应用于光催化降解废水有机污染物[J]. 材料导报, 2023, 37(12): 21110143-9.
[13] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[14] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[15] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed