Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (7): 1192-1196    https://doi.org/10.11896/j.issn.1005-023X.2018.07.022
  生物医用材料 |
可降解生物医用Zn-1Al合金的制备及性能研究
赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔
河北工业大学材料科学与工程学院,天津 300130
Fabrication and Investigation on Properties of Degradable Zn-1Al Alloy for Biomedical Applications
ZHAO Lichen, SONG Yuting, ZHANG Zhe, WANG Xin, WANG Tiebao, CUI Chunxiang
School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130
下载:  全 文 ( PDF ) ( 2297KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以商业铸态纯锌和纯铝为原料,制备得到Zn-1Al铸态合金。利用光学显微镜和扫描电子显微镜观察Zn-1Al铸态合金的显微组织,利用万能试验机测定Zn-1Al铸态合金的压缩力学性能,利用模拟体液浸泡实验表征Zn-1Al铸态合金的生物降解性能和诱导Ca-P沉积能力。结果表明,向Zn中加入1%(质量分数)的合金元素Al后,铸态纯锌的显微组织明显细化,且Zn-1Al合金的压缩力学性能也较铸态纯锌明显提高。模拟体液浸泡实验结果表明铸态Zn-1Al合金在浸泡过程中降解速率与铸态纯锌相比未出现明显差别,但Zn-1Al合金能更有效地诱导Ca-P沉积。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵立臣
宋玉婷
张喆
王新
王铁宝
崔春翔
关键词:  Zn-1Al合金  力学性能  Ca-P沉积  生物医用  可降解    
Abstract: As-cast Zn-1Al alloy was fabricated with commercially pure zinc and pure aluminum as raw materials. Microstructure of the as-cast Zn-1Al alloy was observed by optical microscopy and scanning electron microscopy, and the compressive mechanical properties were measured by a universal test machine. The biodegradable property and the ability to induce Ca-P precipitation of the as-cast Zn-1Al alloy were characterized by immersion tests in simulated body fluid. The results show that the microstructures of the as-cast Zn-1Al alloy were obviously refined by adding 1wt% Al element. In addition, the compressive mechanical properties of the as-cast Zn-1Al alloy were also enhanced compared with that of as-cast pure zinc. The immersion tests in simulated body fluid suggest that the as-cast Zn-1Al alloy has a similar degradable rate compared to as-cast pure Zn. However, Zn-1Al alloy can more efficiently induce Ca-P precipitation during immersion tests.
Key words:  Zn-1Al alloy    mechanical property    Ca-P precipitation    biomedical application    degradability
出版日期:  2018-04-10      发布日期:  2018-05-11
ZTFLH:  TG146.1  
  R318.08  
基金资助: 河北省高等学校科学技术研究项目(QN2014032);河北省自然科学基金(E2016202332)
通讯作者:  崔春翔:通信作者,博士,研究方向为金属基复合材料 E-mail:hutcui@hebut.edu.cn   
作者简介:  赵立臣:男,1972年生,博士,主要研究方向为生物医用金属材料
引用本文:    
赵立臣, 宋玉婷, 张喆, 王新, 王铁宝, 崔春翔. 可降解生物医用Zn-1Al合金的制备及性能研究[J]. 《材料导报》期刊社, 2018, 32(7): 1192-1196.
ZHAO Lichen, SONG Yuting, ZHANG Zhe, WANG Xin, WANG Tiebao, CUI Chunxiang. Fabrication and Investigation on Properties of Degradable Zn-1Al Alloy for Biomedical Applications. Materials Reports, 2018, 32(7): 1192-1196.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.07.022  或          https://www.mater-rep.com/CN/Y2018/V32/I7/1192
1 Vojtch D, Kubásek J, Šerák J, et al. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J].Acta Biomaterialia,2011,7(9):3515.
2 Li H F, Xie X H, Zheng Y F, et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg,Ca and Sr[J].Scientific Reports,2015,5:1.
3 Murni N S, Dambatta M S, Yeap S K, et al. Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells[J].Materials Science & Engineering C,2015,49:560.
4 Li H, Yang H, Zheng Y, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J].Materials & Design,2015,83:95.
5 Fosmire G J. Zinc toxicity[J].American Journal of Clinical Nutrition,1990,51(2):225.
6 Zhang Z, Gu B, Zhang W, et al. The enhanced characteristics of osteoblast adhesion to porous zinc-TiO2 coating prepared by plasma electrolytic oxidation[J].Applied Surface Science,2012,258(17):6504.
7 Moonga B S, Dempster D W. Zinc is a potent inhibitor of osteoclastic bone resorption in vitro[J].Journal of Bone and Mineral Research:the Official Journal of the American Society for Bone and Mineral Research,1995,10(3):453.
8 Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications[J].Materials and Design,2016,108:136.
9 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J].Advanced Materials,2013,25(18):2577.
10Kubásek J, Vojtěch D, Jablonská E, et al. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J].Materials Science & Engineering C,2016,58:24.
11Dambatta M S, Izman S, Kurniawan D, et al. Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J].Materials & Design,2015,85:431.
12Liu X, Sun J, Qiu K, et al. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J].Journal of Alloys and Compounds,2016,664:444.
13 Ruan J M, Crant M H, Huang B Y. Approach of metal cytotoxicity (Ⅰ)[J].Materials Science and Engineering of Powder Metallurgy,2001,6(1):12(in Chinese).
阮建明,Crant M H,黄伯云.金属毒性研究(Ⅰ)[J].粉末冶金材料科学与工程,2001,6(1):12.
14 Gu X N, Zheng Y F, Cheng Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J].Biomaterials,2009,30(4):484.
15 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials,2006,27(5):2907.
16 Goo E, Park K T. Application of the von mises criterion to deformation twinning[J].Scripta Metallurgica,1989,23(7):1053.
17 Lu X, Leng Y. Theoretical analysis of calcium phosphate precipitation in simulated body fluid[J].Biomaterials,2005,26(10):1097.
18 Toworfe G K, Composto R J, Shapiro I M, et al. Nucleation and growth of calcium phosphate on amine-,carboxyl- and hydroxyl-silane self-assembled monolayers[J].Biomaterials,2006,27(4):631.
19 Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti[J].Acta Biomaterialia,2007,3(4):573.
20Yazdimamaghani M, Razavi M, Vashaee D, et al. Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite[J].Materials Science & Engineering C,2015,49:436.
21Okido M, Kuroda K, Ishikawa M, et al. Hydroxyapatite coating on titanium by means of thermal substrate method in aqueous solutions[J].Solid State Ionics,2002,151:47.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed